首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Effects of PVN galanin on macronutrient selection   总被引:4,自引:0,他引:4  
The neuropeptide galanin (GAL), after injection into the hypothalamic paraventricular nucleus (PVN), elicited a potent feeding response. In satiated rats maintained on pure macronutrient diets (protein, carbohydrate and fat), PVN GAL injection was found to cause a preferential increase in the consumption of the fat diet, with a significantly smaller increase in carbohydrate intake and no change in protein ingestion. When the fat diet was removed, GAL's stimulatory effect on carbohydrate ingestion was reliably and selectively enhanced. These effects of GAL stand in contrast to those of neuropeptide Y (NPY), which is co-localized with NE in the PVN and which induced in these animals a strong and selective enhancement of carbohydrate intake after PVN injection. Similarly, PVN NE, known to act via alpha 2-noradrenergic receptors, induced feeding specifically of carbohydrate and, to a small extent, fat. These differential results demonstrate the specificity of the effects of the peptides (GAL and NPY) and NE on macronutrient selection, all of which can be repeatedly observed in the same group of animals and which appear to be unrelated to the rats' natural 24 hr baseline preferences. However, we did observe a strong positive correlation between NE- and GAL-induced carbohydrate intake. In light of this relationship and additional pharmacological evidence linking GAL- and NE-induced feeding, it is proposed that the effects of GAL on macronutrient selection may be mediated, at least in part, by the alpha 2-noradrenergic feeding system within the PVN.  相似文献   

2.
To differentiate NPY receptor subtypes, Y1 and Y2, in terms of their impact on feeding behavior, the intact molecule NPY(1–36) and the 3 fragments, NPY(2–36), the Y1 agonist [Leu31,Pro34]NPY, and the Y2 agonist NPY(13–36), were injected (100 pmol/0.3 μl) into the hypothalamic paraventricular nucleus (PVN) of freely feeding rats. A computer-automated data acquisition system was employed in these experiments to permit a detailed analysis of feeding over the 12-h nocturnal cycle, in animals maintained on pure macronutrient diets. The results demonstrate that: 1) NPY(1–36) potentiates feeding behavior, primarily carbohydrate ingestion, by increasing the size and duration of the first meal after injection, rather than by affecting meal number or feeding rate, suggesting that NPY acts through mechanisms of satiety. The potentiation of carbohydrate intake occurs in association with a suppression of protein intake, which is strongest during the second meal after injection and which further increases the proportion of carbohydrate in the diet. No changes in fat ingestion are seen. 2) NPY(2–36), with the N-terminal tyrosine residue deleted, is equally potent to NPY(1–36) in potentiating carbohydrate intake and increasing meal size; however, it is less selective than NPY(1–36), producing an additional, smaller increase in consumption of protein. 3) The stimulatory effect of these peptides on carbohydrate intake and meal size is similarly observed, with somewhat reduced potency, after PVN injection of the selective Y1 agonist [Leu31,Pro34]NPY which, like NPY(1–36), also reduces protein intake. 4) The Y2 receptor agonist, NPY(13–36), causes a decrease in the ingestion of carbohydrate, a smaller decline in protein intake, and a reduction in meal size. It is proposed that hypothalamic Y1 receptors mediate the stimulatory effect of NPY on carbohydrate intake and meal size, while Y2 receptors have the opposite effect of suppressing carbohydrate intake, possibly by altering presynaptic release of monoamines known to influence nutrient ingestion.  相似文献   

3.
To differentiate NPY receptor subtypes, Y1 and Y2, in terms of their impact on feeding behavior, the intact molecule NPY(1–36) and the 3 fragments, NPY(2–36), the Y1 agonist [Leu31,Pro34]NPY, and the Y2 agonist NPY(13–36), were injected (100 pmol/0.3 μl) into the hypothalamic paraventricular nucleus (PVN) of freely feeding rats. A computer-automated data acquisition system was employed in these experiments to permit a detailed analysis of feeding over the 12-h nocturnal cycle, in animals maintained on pure macronutrient diets. The results demonstrate that: 1) NPY(1–36) potentiates feeding behavior, primarily carbohydrate ingestion, by increasing the size and duration of the first meal after injection, rather than by affecting meal number or feeding rate, suggesting that NPY acts through mechanisms of satiety. The potentiation of carbohydrate intake occurs in association with a suppression of protein intake, which is strongest during the second meal after injection and which further increases the proportion of carbohydrate in the diet. No changes in fat ingestion are seen. 2) NPY(2–36), with the N-terminal tyrosine residue deleted, is equally potent to NPY(1–36) in potentiating carbohydrate intake and increasing meal size; however, it is less selective than NPY(1–36), producing an additional, smaller increase in consumption of protein. 3) The stimulatory effect of these peptides on carbohydrate intake and meal size is similarly observed, with somewhat reduced potency, after PVN injection of the selective Y1 agonist [Leu31,Pro34]NPY which, like NPY(1–36), also reduces protein intake. 4) The Y2 receptor agonist, NPY(13–36), causes a decrease in the ingestion of carbohydrate, a smaller decline in protein intake, and a reduction in meal size. It is proposed that hypothalamic Y1 receptors mediate the stimulatory effect of NPY on carbohydrate intake and meal size, while Y2 receptors have the opposite effect of suppressing carbohydrate intake, possibly by altering presynaptic release of monoamines known to influence nutrient ingestion.  相似文献   

4.
Neuropeptide Y (NPY) injected into the paraventricular nucleus (PVN) is known to elicit a powerful feeding response in satiated, brain-cannulated rats [41, 42, 43]. The present experiment investigates the effect of peptide YY (PYY), a structurally-related peptide, on feeding behavior and, in addition, the effects of both PYY and NPY on the pattern of macronutrient selection. Injection of PYY directly into the PVN, in doses ranging from 7.8 to 235 pmol/0.3 μl, caused a strong, dose-dependent stimulation of feeding behavior, as well as a small stimulation of drinking behavior, in satiated rats. The mean latency to eat was 9.3 min, with substantial feeding occurring within 30 min of the injection. At low doses, the increase in feeding was seen predominantly during the first hr. At the highest dose, in contrast, food intake continued to increase progressively over the next few hr, such that by 4 hr postinjection food intake was more than 20 g over vehicle baseline. In 1 hr tests with 3 pure macronutrient (protein, fat and carbohydrate) diets simulataneously available, PYY and NPY (78 pmol/0.3 μl) both elicited a strong and selective increase in carbohydrate consumption, with little or no effect on protein or fat consumption. These results suggest that hypothalamic receptors sensitive to PYY and NPY may participate in the control of carbohydrate consumption.  相似文献   

5.
The opioid peptides enkephalin (ENK) and dynorphin (DYN), when injected into the hypothalamus, are known to stimulate feeding behavior and preferentially increase the ingestion of a high-fat diet. Studies of another peptide, galanin (GAL), with similar effects on feeding demonstrate that a high-fat diet, in turn, can stimulate the expression of this peptide in the hypothalamus. The present study tested different diets and variable periods of high- vs. low-fat diet consumption to determine whether the opioid peptides respond in a similar manner as GAL. In six experiments, the effects of dietary fat on ENK and DYN were examined in three hypothalamic areas: the paraventricular nucleus (PVN), perifornical hypothalamus (PFH), and arcuate nucleus (ARC). The results demonstrated that the ingestion of a high-fat diet increases gene expression and peptide levels of both ENK and DYN in the hypothalamus. The strongest and most consistent effect is seen in the PVN. In this nucleus, ENK and DYN are increased by 50-100% after 1 wk, 1 day, 60 min, and even 15 min of high-fat diet consumption. While showing some effect in the PFH, these peptides in the ARC are considerably less responsive, exhibiting no change in response to the briefer periods of diet intake. This effect of dietary fat on PVN opioids can be observed with diets equal in caloric density and palatability and without a change in caloric intake, body weight, fat pad weight, or levels of insulin or leptin. The data reveal a strong and consistent association between these peptides and a rise in circulating levels of triglycerides, supporting a role for these lipids in the fat-induced stimulation of opioid peptides in the PVN, similar to GAL.  相似文献   

6.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

7.
S F Leibowitz  L Hor 《Peptides》1982,3(3):421-428
Brain cannulated rats were injected with the opioid peptide beta-endorphin (beta-EP) directly into the hypothalamic paraventricular nucleus (PVN) where norepinephrine (NE) is most effective in stimulating eating behavior. Beta-Endorphin (1.0 nmole) reliably increased food intake in satiated animals, and this response was blocked by local administration of the selective opiate antagonist naloxone. The eating induced by beta-EP was positively correlated in magnitude with the NE response and, like NE, was antagonized by PVN injection of the alpha-noradrenergic blocker phentolamine. Naloxone had no effect on NE-induced eating, and the dopaminergic blocker fluphenazine failed to alter either beta-EP or NE eating. When injected simultaneously, at maximally effective doses, beta-EP and NE produced an eating response which was significantly larger than either of the responses elicited separately by beta-EP or NE and was essentially equal to the sum of these two responses. The evidence obtained in this study suggests that beta-EP and NE stimulate food ingestion through their action on PVN opiate and alpha-noradrenergic receptors, respectively, and that beta-EP's action is closely related to, and in part may be dependent upon, the PVN alpha-noradrenergic system for feeding control.  相似文献   

8.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

9.
Liu X  York DA  Bray GA 《Peptides》2004,25(12):2171-2177
Ghrelin is a peptide produced by the stomach and released into the circulation. As a natural ligand of the growth hormone secretagogue (GHS) receptor, it stimulates growth hormone secretion but it also stimulates feeding in humans and rodents. The orexigenic effect of ghrelin has been related to AgRP/NPY and orexin pathways. We proposed that ghrelin might be involved in the susceptibility to diet induced obesity and in the regulation of macronutrient selection. We have investigated these hypotheses in two strains of rat, the Osborne–Mendel (OM) rat that prefers diets high in fat and is sensitive to dietary obesity and the S5B/P1 (S5B) rat that prefers a low fat diet and is resistant to high fat diet induced obesity.

OM and S5B rats were adapted to a choice of high fat (HF) and low fat (LF) diet for 2 weeks. GHRP-2, an analogue of ghrelin, was injected intraperitoneally into satiated and 24 h fasted rats at doses of 10, 30 and 90 nmol. Food intake was measured over the next 4 h period. In satiated S5B rats, GHRP-2 stimulated intake of the LF diet in a dose dependent manner but did not affect the intake of the HF diet. In satiated OM rats, 90 nmol of GHRP-2 stimulated HF intake. In contrast, neither fasted OM nor S5B rats increased the intake of either HF or LF diet in response to GHRP-2. Fasting for 18 h induced a large rise in ghrelin mRNA in stomach of OM rats but not in S5B rats. There were no significant differences in plasma total ghrelin. An increase in ghrelin mRNA in stomach immediately before the onset of the dark cycle was observed in OM but not in S5B rats. Active ghrelin level was significantly affected by different feeding conditions in both OM and S5B rats adapted on HF diet with a trend to increase after 48 h of fasting and to decline to basal levels following 10 h of refeeding. These data suggest that ghrelin stimulates the intake of the preferred macronutrient. In addition, a differential regulation of ghrelin gene expression between OM and S5B rats may be important in their differential sensitivity to HF diet-induced obesity.  相似文献   


10.
Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.  相似文献   

11.
Growth hormone-releasing factor (GRF) is a hypothalamic peptide named for its ability to induce release of growth hormone from the anterior pituitary. GRF also acts as a neurotransmitter in the suprachiasmatic nucleus/medial preoptic area (SCN/MPOA) to stimulate food intake. The purpose of this series of experiments was to explore the nature of GRF-induced feeding, with a particular emphasis on macronutrient selectivity, and to examine the role of opiate activity in the paraventricular nucleus of the hypothalamus (PVN). Chow intake stimulated by GRF microinjection (1 pmol/0.5 μl) into the SCN/MPOA was blocked by injection of methyl-naltrexone (3 μg/0.5 μl) into the PVN. In animals habituated to macronutrient diets (Teklad, WI), GRF preferentially stimulated intake of protein at 2 and 4 h postinjection, whereas it had no effect on carbohydrate intake. Further, this effect was blocked by injection of naloxone (40 nmol/0.5 μl) into the PVN. Microinjection of morphine (0, 1, 10, and 17 μg/0.5 μl) into the PVN also specifically stimulated protein intake at 2 and 4 h postinjection. These results suggest that feeding derived from GRF actions in the SCN/MPOA is macronutrient selective, and is dependent on PVN opiate activity for expression.  相似文献   

12.
Food-restricted rats anticipate a fixed daily mealtime by entrainment of a circadian timekeeping mechanism separate from that which generates daily light-entrainable activity rhythms. The entrainment pathways and rhythm-generating substrates for food-anticipatory rhythms are unknown. In this study, we attempted to define minimal food-related stimuli necessary or sufficient for food anticipation by employing schedules of restricted macronutrient availability, with or without free access to a complementary diet. Rats did not anticipate a daily meal of protein, carbohydrate, or fat, as measured by tilt-cage, running-wheel, or food-bin activity, when they had free access to other nutrients. However, rats did anticipate single-macronutrient meals when they were limited to only two, larger, complementary meals each day (protein-fat, protein-carbohydrate) providing a reduced total number of calories. Previous work has shown that caloric restriction per se is not a prerequisite for food anticipation. In combination with that study, the present results indicate that the size of a nutrient meal, in absolute terms or relative to total daily nutrient intake, is of pre-eminent importance in determining its value as a synchronizer of anticipatory rhythms. The results further suggest that physiological responses unique to the ingestion and absorption of any particular macronutrient are not necessary components of the entrainment pathway.  相似文献   

13.
In order to clarify the physiological role of norepinephrine (NE) in the hypothalamic paraventricular nucleus (PVN), changes in extracellular levels of endogenous NE were measured in 11 freely-moving rats using microdialysis and high pressure liquid chromatography with electrochemical detection. To determine whether there was a circadian pattern of extracellular NE in freely-eating subjects, samples of dialysate from the vicinity of the PVN were collected and assayed for NE every 2 hrs for 48 hrs. The pattern of NE averaged across subjects was similar during both 24-hr periods, with a reliable peak at the beginning of the dark cycle and relatively stable levels at all other times. When these animals were subsequently deprived of food for 24 hrs, a gradual rise in extracellular NE was observed, ultimately increasing to 215% of the predeprivation level. When the animals were refed and NE measurements were continued at more frequent intervals, extracellular levels were found to decline during the first 20 min of eating, as well as over the next 3 hrs as food intake diminished. These patterns of extracellular NE, together with previous evidence, suggest that endogenous NE in the PVN plays a role in the initiation and/or maintenance of normal eating behavior at the beginning of the nocturnal feeding period, as well as after food deprivation.  相似文献   

14.
The ingestive profiles of intact, A5 and A7 damaged animals were examined during the 2-hr nocturnal period following onset of the dark cycle. A5, A7 and intact rats consumed comparable amounts of food following initial access to food nocturnally. Sebsequent feeding declined in A5 animals below control values and failed to return to baseline at the end of the nocturnal period examined. A7 damaged rats appeared more resistant to the appetite suppressing effects of initial meal taking and consumed more food than control animals. Only A5 damaged rats were noted to be hyperdipsic during the immediate 10 postoperative days. Intracranial injection of 1-norepinephrine bitartrate (10 ug/ul) into the paraventricular nucleus (PVN) of the hypothalmus produced a reliable facilitation of feeding in A5, A7 and intact rats during the first hour of the dark cycle. A5 rats exhibited the largest increase in feeding elicited by NE administration into the PVN. This feeding response was observed in rats with A5 lesions regardless of whether testing was carried out during the initial hours of the dark cycle or during a predetermined “satiation” test. A5 lesions also effected a marked hyperglycemia while A7 lesions were ineffective in this respect. Taken together these data suggest the A5 and A7 cell groupings regulate spontaneous feeding within a rostrally coursing feeding circuitry and appear to interact with the PVN in the elicitation of noradrenergic feeding.  相似文献   

15.
There is an intimate relationship between nutritional intake (eating) and serotonin activity. Experimental manipulations (mainly neuropharmacological) of serotonin influence the pattern of eating behavior, subjective feelings of appetite motivation, and the response to nutritional challenges. Similarly, nutritional manipulations (food restriction, dieting, or altered nutrient supply) change the sensitivity of the serotonin network. Traditionally, serotonin has been linked to the macronutrient carbohydrate via the intermediary step of plasma amino acid ratios. However, it has also been demonstrated that 5-HT drugs will reduce energy intake and reverse body weight gain in rats exposed to weight increasing high fat diets. 5-HT drugs can also reduce food intake and block weight gain of rats on a high fat cafeteria diet. Some diet selection studies in rats indicate that the most prominent reduction of macronutrient intake is for fat. These data indicate that 5-HT activity can bring about a reduction in fat consumption. In turn, different types of dietary fat can alter brain 5-HT activity. In human studies the methodology of food choice experiments has often precluded the detection of an effect of 5-HT manipulation on fat intake. However, there is evidence that in obese and lean subjects some 5-HT drugs can readily reduce the intake of high fat foods. Data also suggest that 5-HT activation can lead to a selective avoidance of fat in the diet. These effects of 5-HT on the intake of dietary fat may involve a pre-absorptive mechanism and there is evidence that 5-HT is linked to cholecystokinin and enterostatin. These proposals have theoretical and practical implications and suggest possible strategies to intensify or advance fat-induced satiety signals.  相似文献   

16.
Previous work from our laboratory indicates that when rats are given a choice between a high-fat and a high-sucrose diet, opioid blockade with naltrexone (NTX) in a reward-related site (central amygdala) inhibits intake of the preferred diet only, whereas NTX injected into a homeostasis-related site, such as the hypothalamic paraventricular nucleus (PVN), inhibits intake of both diets. However, other work suggests that opioids increase intake of fat specifically. The present study further investigates the role of PVN opioids in food choices made by calorically-replete animals. We used a binge model with chow-maintained rats given 3-h access to a choice of a high-fat or high-sucrose diet 3 days a week. We hypothesized that intra-PVN injection of the mu-opioid agonist, DAMGO (0, 0.025, 0.25, and 2.5 nmol) would enhance, and NTX (0, 10, 30, and 100 nmol) would inhibit intake of both diets to an equal extent. We found that when animals were divided into groups according to sucrose or fat preference, DAMGO increased fat intake in fat-consuming animals, while having no effect on intake of either diet in sucrose-consuming animals. NTX, however, inhibited fat intake in both groups. Intra-PVN NTX did not inhibit intake of sucrose when presented in the absence of a fat choice, but did so when injected peripherally. Furthermore, intra-PVN and systemic NTX inhibited intake of chow by 24-h-food-deprived animals. These results indicate a complex role for PVN opioids in food intake with preference, nutrient type, and energy state affecting the ability of these compounds to change behavior.  相似文献   

17.
18.
The steroid hormone estradiol decreases meal size by increasing the potency of negative-feedback signals involved in meal termination. We used c-Fos immunohistochemistry, a marker of neuronal activation, to investigate the hypothesis that estradiol modulates the processing of feeding-induced negative-feedback signals within the nucleus of the solitary tract (NTS), the first central relay of the neuronal network controlling food intake, and within other brain regions related to the control of food intake. Chow-fed, ovariectomized rats were injected subcutaneously with 10 microg 17-beta estradiol benzoate or sesame oil vehicle on 2 consecutive days. Forty-eight hours after the second injections, 0, 5, or 10 ml of a familiar sweet milk diet were presented for 20 min at dark onset. Rats were perfused 100 min later, and brain tissue was collected and processed for c-Fos-like immunoreactivity. Feeding increased the number of c-Fos-positive cells in the NTS, the paraventricular nucleus of the hypothalamus (PVN), and the central nucleus of the amygdala (CeA) in oil-treated rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, which process negative-feedback satiation signals, but not in the rostral NTS, which processes positive-feedback gustatory signals controlling meal size. Estradiol treatment also increased feeding-induced c-Fos in the PVN and CeA. These results indicate that modest amounts of food increase neuronal activity within brain regions implicated in the control of meal size in ovariectomized rats and that estradiol treatment selectively increases this activation. They also suggest that estradiol decreases meal size by increasing feeding-related neuronal activity in multiple regions of the distributed neural network controlling meal size.  相似文献   

19.
A number of metabolic factors and the activity of a number of enzymes were determined in meal-fed (animals fed a single daily 2 hr meal) and nibbling (ad libitum-fed) rats. The dependency of the observed adaptive changes on the ingestion of carbohydrate was studied by feeding diets high in carbohydrate or fat. Glucose-6-phosphate dehydrogenase and NADP-malic dehydrogenase were more active in adipose tissue from high carbohydrate meal-fed rats than in tissue from ad libitum-fed rats. The activity in adipose tissue of isocitric dehydrogenase, 6-phosphogluconate dehydrogenase, and NAD-malic dehydrogenase did not increase significantly in response to meal-feeding the high carbohydrate diet. No increase in lipogenesis or enzyme activity could be demonstrated in adipose tissue from rats meal-fed a high fat diet. Lipase activity of adipose tissue was increased by high carbohydrate meal-feeding and decreased by feeding a high fat diet. The in vitro uptake of palmitate-1-(14)C by adipose tissue was depressed by a high fat diet and enhanced in rats meal-fed a high carbohydrate diet. Diaphragm or slices of liver from high fat-fed rats oxidized palmitate-1-(14)C more rapidly than did tissue from ad libitum-fed animals. Evidence is presented for the quantitative importance of citrate as a source of extramitochondrial acetyl CoA in adipose tissue of meal-eating and ad libitum-fed rats. The relationship of extramitochondrially formed citrate to the NAD-malic dehydrogenase-malic enzyme system in adipose tissue is discussed.  相似文献   

20.
Although it has been known for more than 50 years that zinc (Zn) deficiency regularly and consistently causes anorexia in many animal species, the basic mechanism(s) that cause this phenomenon still remain(s) an enigma. The following studies describe feeding behavior in the early stages of zinc deficiency in the rat model. In one experiment, we used computerized feeding monitors that measured the intake of individual rats at 10-min intervals over 24-hr periods. Male rats were acclimated to the cages and fed a Zn-adequate egg-white-based diet, or a similar diet with <1.0 mg Zn/kg. Food intake was monitored for seven, consecutive 24-hr periods. The 24-hr food intake pattern of the Zn-deprived rats did not differ from the controls; they simply ate less food, mainly during the night hours, with no differences between groups during the day. Although Zn-deprived rats ate less food than controls, the percentage of total diet consumed during night and day did not differ between groups. In another experiment, we simultaneously offered male rats three isocaloric diets with different macronutrient compositions and with or without adequate Zn, and measured the amount of each diet selected during seven, 24-hr periods. The three diets contained either 57% protein from egg white, 30% fat from soybean oil, or 80% carbohydrate from a combination of starch, hydrolyzed starch, and sucrose. For the first four days on experiment, rats selected similar amounts of each diet. Then the Zn-deprived rats began to select only 50% as much of the protein diet as the controls. Similar results were obtained when the data were expressed on the basis of each macronutrient as a percentage of the total diet selected. Zn-deprived rats selected a diet that contained 8% protein, 73% carbohydrate, and 6% fat while the Zn-adequate rats selected 12% protein, 69% carbohydrate, and 6% fat. Fat intake was not affected by Zn-deprivation. The results confirm our previous findings, and are discussed in terms of Zn-deprivation blunting the pathways of signal transduction that involve the peptide hormones known to affect food intake regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号