首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
5.
The ast operon, encoding enzymes of the arginine succinyltransferase (AST) pathway, was cloned from Salmonella typhimurium, and the nucleotide sequence for the upstream flanking region was determined. The control region contains several regulatory consensus sequences, including binding sites for NtrC, cyclic AMP receptor protein (CRP), and ArgR. The results of DNase I footprintings and gel retardation experiments confirm binding of these regulatory proteins to the identified sites. Exogenous arginine induced AST under nitrogen-limiting conditions, and this induction was abolished in an argR derivative. AST was also induced under carbon starvation conditions; this induction required functional CRP as well as functional ArgR. The combined data are consistent with the hypothesis that binding of one or more ArgR molecules to a region between the upstream binding sites for NtrC and CRP and two putative promoters plays a pivotal role in modulating expression of the ast operon in response to nitrogen or carbon limitation.  相似文献   

6.
7.
8.
The N-terminal activation domain of Escherichia coli sigma 54 was randomly mutated to provide a library of changes that might allow the required enhancer function to be bypassed. Five clones harbouring mutant sigma factors were obtained that exhibited this property in that they enhanced growth under nitrogen-limiting conditions in cells lacking NtrC. DNA sequence analysis located all mutations to four leucines in a small region between amino acids 25 and 31. No mutant sigma factors retained the hydrophobic character of the leucine residues. Mutant sigma factors were shown to transcribe in vitro without the need for enhancer binding activator or ATP hydrolysis, confirming the in vivo phenotype. These and other data suggest that a very small set of leucines is critical for keeping polymerase function in check, allowing high responsiveness to physiological induction via enhancer proteins such as NtrC.  相似文献   

9.
10.
This work describes a regulatory network of Pseudomonas putida controlled in response to nitrogen availability. We define NtrC as the master nitrogen regulator and suggest that it not only activates pathways for the assimilation of alternative nitrogen sources but also represses carbon catabolism under nitrogen-limited conditions, possibly to prevent excessive carbon and energy flow in the cell.  相似文献   

11.
Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.  相似文献   

12.
13.
The glnB gene from Bradyrhizobium japonicum, the endosymbiont of soybeans (Glycine max), was isolated and sequenced, and its expression was examined under various culture conditions and in soybean nodules. The B. japonicum glnB gene encodes a 12,237-dalton polypeptide that is highly homologous to the glnB gene products from Klebsiella pneumoniae and Escherichia coli. The gene is located directly upstream from glnA (encoding glutamine synthetase), a linkage not observed in enteric bacteria. The glnB gene from B. japonicum is expressed from tandem promoters, which are differentially regulated in response to the nitrogen status of the medium. Expression from the downstream promoter involves the B. japonicum ntrC gene product (NtrC) in both free-living and symbiotic cells. Thus, glnB, a putative nitrogen-regulatory gene in B. japonicum, is itself Ntr regulated, and NtrC is active in B. japonicum cells in their symbiotic state.  相似文献   

14.
15.
16.
17.
18.
Genetic changes lead gradually to altered protein function, making deduction of the molecular basis for activity from a sequence difficult. Comparative studies provide insights into the functional consequences of specific changes. Here we present structural and biochemical studies of NtrC4, a sigma-54 activator from Aquifex aeolicus, and compare it with NtrC1 (a paralog) and NtrC (a homolog from Salmonella enterica) to provide insight into how a substantial change in regulatory mechanism may have occurred. Activity assays show that assembly of NtrC4's active oligomer is repressed by the N-terminal receiver domain, and that BeF addition (mimicking phosphorylation) removes this repression. Observation of assembly without activation for NtrC4 indicates that it is much less strongly repressed than NtrC1. The crystal structure of the unactivated receiver-ATPase domain combination shows a partially disrupted interface. NMR structures of the regulatory domain show that its activation mechanism is very similar to that of NtrC1. The crystal structure of the NtrC4 DNA-binding domain shows that it is dimeric and more similar in structure to NtrC than NtrC1. Electron microscope images of the ATPase-DNA-binding domain combination show formation of oligomeric rings. Sequence alignments provide insights into the distribution of activation mechanisms in this family of proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号