首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Summary 1. Amphetamine-induced c-fos andegr-1 expression in the striatum was used as a model in which to study the effects of antisense oligodeoxynucleotides (ODNs) directed at c-fos. Using direct infusions of ODNs into the striata of animals we have demonstrated that c-fos antisense ODNs retain most of their biological activity with 2- or 3-base substitutions. The c-fos antisense and mismatch ODNs attenuated Fos immunoreactivity but had little effect on Egr-1 immunoreactivity.2. In another group of studies examining the role of c-fos in amygdala kindling, we have demonstrated that ODNs cause neurotoxic damage following repeated daily infusions into the amygdala. The damage observed was greatly diminished when the time interval between infusions was extended.  相似文献   

2.
1. The aim of this study was to determine whether central networks are involved in the presumptive behavioral and autonomic regulatory actions of secretin, a gut hormone that has been reported to have ameliorative effects in autistic children.2. Central neural responses monitored by regional c-fos gene expression were examined in response to intracerebroventricular secretin injection in awake, freely-moving Sprague-Dawley rats. Tissue sections were incubated in an antibody to the c-fosgene product, Fos, and processed immunohistochemically.3. Qualitative differences in Fos immunoreactivity in stress adaptation and visceral representation areas of the brain were observed between secretin- and vehicle-infused age-matched pairs (n = 4 pairs). Secretin-activated regions include the area postrema, dorsal motor nucleus, medial region of the nucleus of the solitary tract and its relay station in the lateral tegmentum, locus ceruleus, ventral periaqueductal gray, periventricular thalamic nucleus, paraventricular hypothalamus magnocellularis, medial and central amygdala, lateral septal complex as well as ependymal and subependymal nuclei lining the third ventricle. Specific areas of the cerebral cortex were heavily labeled in secretin-treated rats, as compared to controls: the medial bank of the anterior prefrontal cortex, orbitofrontal cortex, the piriform cortex, and the anterior olfactory nucleus. Secretin attenuated Fos immunoreactivity in the dorsal periaqueductal gray, intralaminar thalamus, medial parvicellular compartment of the hypothalamus, supraoptic nucleus of the hypothalamus, lateral amygdala, motor cortex, and the somatosensory and association areas of the parietal cortex.4. Secretin alters the activity of structures involved in behavioral conditioning of stress adaptation and visceral reflex reactions. This study predicts a possible cellular mechanism, activation of third ventricular ependymal and subependymal cells, as well as central regulatory actions of secretin. The physiological effects of secretin on behavioral, endocrine, autonomic and sensory neuronal activation patterns, together, contribute to central c-fos activation. Secretin alters the activity of structures involved in behavioral conditioning of stress adaptation and visceral reflex reactions. This study predicts a possible cellular mechanism, activation of third ventricular ependymal and subependymal cells, and central regulatory actions of secretin. The physiological effects of secretin on behavioral, endocrine, autonomic and sensory neuronal activation patterns, together, contribute to central c-fos activation. These findings mandate further investigation of secretin as a brain/gut stress regulatory hormone.  相似文献   

3.
1. c-fos mRNA expression and Fos protein expression were investigated by in situ hybridization and immunohistochemistry after 30 min of forced restraint stress or pentylenetetrazol (PTZ; 64 mg/kg, i.p.)-induced seizures.2. Forced restraint stress and PTZ-induced seizures generated c-fos mRNA expression of distinct intensities, but in similar brain regions, including the hippocampus, the amygdala, the piriform cortex, the paraventricular hypothalamic nucleus, the habenula, and parts of the cerebral cortex.3. The distribution of Fos-like immunoreactivity induced by stress or seizures only partially overlap. No Fos-like expression was found in the hippocampus or the habenula after restraint stress. Nevertheless, both areas presented Fos-like expression after PTZ-induced seizures.4. Our results support the suggestion that immediate early gene expression in vivo may exhibit both region- and stimulus-specific expression.  相似文献   

4.
5.
A clonal hepatocyte line (FMH-202-2), derived from livers of fetal transgenic mice harbouring human growth hormone (hGH) and SV40 T antigen as transgenes, was used in the investigation of protooncogene expression involved in liver-specific growth control and/or in hepatocellular transformation. In this model system, representing an immortalized, yet untransformed phenotype, the transgenes hGH and SV40 T antigen were expressed constitutively. The c-fos protooncogene was induced by incubation with insulin, epidermal growth factor (EGF) and insulin-like growth factor (IGF-I) in a transient manner comparable to its expression in primary murine hepatocytes. Elucidation of second messenger mechanisms demonstrated that c-fos induction by hepatotrophic growth factors was not mediated by protein kinase C. In contrast to primary hepatocytes, the c-myc protooncogene exhibited a constitutive expression pattern which was independent of growth factor stimulation. These results indicate that apart from hGH and SV40 T antigen, c-myc may play a role in cellular immortalization, but that constitutive expression of these genes, even in combined coexpression, does not suffice to induce the transformed phenotype.  相似文献   

6.
Amphetamine-, cocaine-, and morphine-induced c-fos expression patterns were examined following an injection protocol that has previously been shown to produce behavioral sensitization and enhanced dopamine release in the striatal complex. Drug-specific c-fos patterns were observed in both acute and sensitization injection paradigms. A sensitization pretreatment schedule did, however, alter the c-fos expression patterns induced by all the drugs in the caudate putamen, nucleus accumbens, and the cerebral cortex. In some striatal and cortical regions, there was an increase or recruitment of cells expressing c-fos whereas in others there was an apparent decrease or inhibition. The somatosensory cortex was one area where pretreatment with all three drugs increased c-fos expression. The results suggest that the neuronal networks that are modulated by systemic drug injections in the sensitized animal differ from those affected by the initial drug exposure; areas of overlap may indicate common ‘sensitization’ circuits. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

7.
It has been reported that both c-fos and c-myc mRNAs are induced in NIH/3T3 cells after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. We have studied the effect of TPA on the expression of c-fos and c-myc in EJ-ras-transformed NIH/3T3 and its nontumorigenic flat revertant R1 cells. Although TPA treatment induces c-myc mRNA, as in the case of NIH/3T3 cells, the induced level of c-fos mRNA is greatly reduced not only in slow-growing EJ-ras-transformed NIH/3T3 but also in quiescent R1 cells. In addition, serum-induced c-fos expression is also reduced in EJ-ras-transformed NIH/3T3 and R1 cells. These observations suggest that the pathway from TPA to c-fos gene is different from that to c-myc gene and that the former pathway is down-regulated in association not with the transformed phenotype, but with EJ-ras expression, and it is possible that this reduced induction of c-fos is not specific to TPA.  相似文献   

8.
Summary 1. The aim of this study was to investigate the neurochemical effects and measure the anatomical spread of infusion of c-fos antisense (AS) DNA into the striatum.2. Rats were anesthetized and infused in opposing striata with c-fos AS and c-fos sense (S) DNA. Ten hours later they were injected with apomorphine (2 mg/kg, i.p.) and 20 min later they were overdosed with sodium pentobarbital and their brains either perfused or frozen. Vibratome-cut sections were immunostained for the detection of c-fos, JunB, Krox 24, somatostatin, substance P, dynorphin, tyrosine hydroxylase, and enkephalin. Cryostat-cut sections from the caudate were immunostained for the detection of c-fos, JunB, and Krox 24, as well asin situ hybridization for proenkephalin mRNA. Sections from the globus pallidus were used for the autoradiographic localization of D2 dopamine and A2a adenosine receptors. Sections from the substantia nigra were used for the autoradiographic localization of D1 dopamine and cannabinoid receptors. A second group of rats was injected in opposing striata with biotin-labeled c-fos AS DNA and c-fos S DNA. Ten hours later they were challenged with apomorphine (2 mg/kg, i.p.) and 20 min later brains were either perfused or frozen. Sections from these brains were cut throughout the rostral-caudal extent of the forebrain and the biotin labeled AS DNA was localized.3. Krox 24 was expressed at high levels on the sense side of the brain in the striatum and overlying neocortex. However, on the AS-injected side there was a reduction in Krox 24 expression in striatum and overlying cortex. The biotin-labeled AS studies confirmed that the striatal infusion spread throughout the dorsal striatum as well as the overlying neocortex. We did not detect any changes in neurotransmitter receptors, neuropeptides, or tyrosine hydroxylase in AS/S-injected rat brains.4. These results demonstrate that c-fos AS reduces Krox 24 expression in striatal and neocortical neurons but does not change the expression of a number of other proteins involved in basal ganglia function. Whether this effect is due to nonspecific actions of c-fos AS or to its effects on a component of the transduction pathway responsible for basal Krox 24 expression (NMDA receptors?) is unknown.  相似文献   

9.
10.
11.
The present study used the preproenkephalin knockout (ppENK) mice to test whether the endogenous enkephalins deficit could facilitate the anxiety- and depressive-like symptoms of posttraumatic stress disorder (PTSD). On Day 1, sixteen wildtype (WT) and sixteen ppENK male mice were given a 3 mA or no footshock treatment for 10 seconds in the footshock apparatus, respectively. On Days 2, 7, and 13, all mice were given situational reminders for 1 min per trial, and the freezing response was assessed. On Day 14, all mice were tested in the open field test, elevated plus maze, light/dark avoidance test, and forced swim test. Two hours after the last test, brain tissues were stained to examine c-fos expression in specific brain areas. The present results showed that the conditioned freezing response was significant for different genotypes (ppENK vs WT). The conditioned freezing effect of the ppENK mice was stronger than those of the WT mice. On Day 14, the ppENK mice showed more anxiety- and depressive-like responses than WT mice. The magnitude of Fos immunolabeling was also significantly greater in the primary motor cortex, bed nucleus of the stria terminalis-lateral division, bed nucleus of the stria terminalis-supracapsular division, paraventricular hypothalamic nucleus-lateral magnocellular part, central nucleus of the amygdala, and basolateral nucleus of the amygdala in ppENK mice compared with WT mice. In summary, animals with an endogenous deficit in enkephalins might be more sensitive to PTSD-like aversive stimuli and elicit stronger anxiety and depressive PTSD symptoms, suggesting an oversensitivity hypothesis of enkephalin deficit-induced PTSD.  相似文献   

12.
Summary The presence of c-fos, a marker for cell activation, was investigated in cerebral neurons actively expressing ecdysteroid receptors during larval-pupal development in the tobacco hornworm, Manduca sexta. Colocalization was accomplished by ecdysteroid autoradiography using the tritiated high affinity 20-hydroxyecdysone agonist ponasterone A and immunocytochemistry with an antibody to a peptide sequence which is highly conserved in both human and murine c-fos. Immunoreactivity to a c-fos-like protein(s) was present in nuclei of many neurons of all the developmental stages examined. However, with the exception of the optic lobe, cells expressing nuclear ecdysteroid receptors were more immunoreactive than non-ecdysteroid-binding neurons. These data suggest that ecdysteroid-induced gene activation and translation may involve c-fos expression. Offprint requests to: H.-J. Bidmon  相似文献   

13.
Neuropeptides vasopressin and oxytocin regulate a variety of behaviors ranging from maternal and pair bonding to aggression and fear. Their role in modulating fear responses has been widely recognized, but not yet well understood. Animal and human studies indicate the major role of the amygdala in controlling fear and anxiety. The amygdala is involved in detecting threat stimuli and linking them to defensive behaviors. This is accomplished by projections connecting the central nucleus of the amygdala (CeA) to the brain stem and to hypothalamic structures, which organize fear responses. A recent study by Huber et al demonstrates that vasopressin and oxytocin modulate the excitatory inputs into the CeA in opposite manners. Therefore this finding elucidates the mechanisms through which these neuropeptides may control the expression of fear.  相似文献   

14.
15.
The number of c-fos protein-like immunoreactive (Fos-LI) cells in the gracile nucleus was determined after electrical stimulation at Aα/Aβ-fiber strength of the normal and of the previously injured sciatic nerve in adult rats. No Fos-LI cells were seen after electrical stimulation of the noninjured sciatic nerve, or after sciatic nerve injury without electrical stimulation. However, stimulation 21 days after sciatic nerve transection resulted in numerous Fos-LI cells in the ipsilateral gracile nucleus. Combined Fos immunocytochemistry and retrograde labeling from the thalamus showed that the majority (76%; range = 70–80%) of the cells in the gracile nucleus that expressed Fos-LI after nerve injury projected to the thalamus. The results indicate that morphological, biochemical, and physiological alterations in primary sensory central endings and second-order neurons, which have earlier been demonstrated in the dorsal column nuclei after peripheral nerve injury, are accompanied by changes in the c-fos gene activation pattern after stimulation of the injured sciatic nerve. A substantial number of the c-fos-expressing neurons project to the thalamus.  相似文献   

16.
17.
18.
Summary To better understand possible autocrine or paracrine mechanisms involved in adipose tissue development, we have studied the biosynthesis of insulinlike growth factor I (IGF-I) and prostaglandin E2 (PGE2) by cultured porcine preadipocytes in response to factors known to modulate cell growth and differentiation. The expression of c-fos was also monitored because of the potential role of that proto-oncogene in coordination of growth and differentiation. Preadipocytes were grown to confluence and then maintained in one of three media treatments: a) standard medium supplemented with 10% fetal bovine serum (FBS), b) FBS supplemented with dexamethasone (Dex), c) FBS supplemented with dibutryladenosine 3′–5′-cyclic monophosphate. Indirect measurements of growth indicated that cell proliferation did not differ due to media type. Histochemical and enzymatic measurements of adipocyte development revealed that differentiation occurred only in those cultures exposed to Dex. The increase in adipocyte differentiation in response to Dex was associated with a decrease in c-fos and actin RNA expression whereas the decrease in c-fos RNA expression in response to Dex was small (approximately 40%); immunocytochemical analysis indicated that induction of Fos protein occurred only in undifferentiated cells. Thus, the cells responsible for the decrease in c-fos RNA expression are possibly those signaled to differentiate into adipocytes. Expression of IGF-I RNA and secretion of IGF-I and PGE2 were also decreased in response to Dex treatment. These data provide the first demonstration that biosynthesis of IGF-I by preadipocytes can be modulated by a potent inducer of adipocyte differentiation. The combined results indicate that glucocorticoids may stimulate adipocyte differentiation by suppressing intracellular and putative intercellular mitogenic signals. This work was supported in part by grant HD 18447 from the National Institutes of Health, Bethesda, MD (G. J. H.). Mention of a trade mark, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U. S. Department of Agriculture or University of Georgia and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号