首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage.  相似文献   

2.
3.
4.
5.
The unicellular green algaHaematococcus pluvialis has recently attracted great interest due to its large amounts of ketocarotenoid astaxanthin, 3,3′-dihydroxy-β,β-carotene-4,4′-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle ofH. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from vegetative to cyst cells. Furthermore, measurements of bothin vitro andin vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.  相似文献   

6.
The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids.  相似文献   

7.
Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically.  相似文献   

8.
The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3′-hydroxylase (CrtZ) and β,β-carotenoid 4,4′-ketolase (4,4′-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8 %) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2 % of total carotenoids), astaxanthin monoester (18.2 %), and the free forms of astaxanthin (10.0 %) and the other ketocarotenoids (17.5 %), which indicated that artificial ketocarotenoids corresponded to 94.9 % of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8 %) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.  相似文献   

9.
The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.  相似文献   

10.
Green cells of Haematococcus pluvialis Flotow accumulate the ketocarotenoid astaxanthin under stress conditions, such as high irradiance, nutrient deficiency, high salinity, and high temperature. Though some photoprotective mechanisms have been suggested, the function of astaxanthin in red cysts is still questioned. We studied the role of astaxanthin in photoprotection by inducing its formation in logarithmically growing cultures by high irradiance, thus avoiding unrelated processes that can occur in H. pluvialis when carotenogenesis is induced by other stresses. On exposure to high irradiance, the green Haematococcus culture turned red as lipid globules loaded with astaxanthin esters were formed and concentrated at the periphery of the cell. During this phase of induction, the photosynthesis rates remained high, but the amount of the D1 protein of PSII was significantly reduced. The decline in D1 protein content stopped after 1 day; the level then increased, returning to normal after 5 days. The response of the D1 protein was indicative of a transitional phase in the acclimation of Haematococcus to high light. The formation and deposition of astaxanthin seemed to prevent further reduction in D1 protein level, thus enabling the cell to maintain PSII function and structural integrity. This result seems to be a clear indication of the light screening by astaxanthin, which absorbs light in the blue region, thus protecting the photosynthetic apparatus. When the cells recovered from the high light stress, the astaxanthin globules concentrated around the nucleus, indicating that the pigment also serves as a physicochemical barrier, protecting the replicating DNA from oxidation as the cells divide.  相似文献   

11.
Astaxanthin is a high-value carotenoid which is used as a pigmentation source in fish aquaculture. Additionally, a beneficial role of astaxanthin as a food supplement for humans has been suggested. The unicellular alga Haematococcus pluvialis is a suitable biological source for astaxanthin production. In the context of the strong biotechnological relevance of H. pluvialis, we developed a genetic transformation protocol for metabolic engineering of this green alga. First, the gene coding for the carotenoid biosynthesis enzyme phytoene desaturase was isolated from H. pluvialis and modified by site-directed mutagenesis, changing the leucine codon at position 504 to an arginine codon. In an in vitro assay, the modified phytoene desaturase was still active in conversion of phytoene to ζ-carotene and exhibited 43-fold-higher resistance to the bleaching herbicide norflurazon. Upon biolistic transformation using the modified phytoene desaturase gene as a reporter and selection with norflurazon, integration into the nuclear genome of H. pluvialis and phytoene desaturase gene and protein expression were demonstrated by Southern, Northern, and Western blotting, respectively, in 11 transformants. Some of the transformants had a higher carotenoid content in the green state, which correlated with increased nonphotochemical quenching. This measurement of chlorophyll fluorescence can be used as a screening procedure for stable transformants. Stress induction of astaxanthin biosynthesis by high light showed that there was accelerated accumulation of astaxanthin in one of the transformants compared to the accumulation in the wild type. Our results strongly indicate that the modified phytoene desaturase gene is a useful tool for genetic engineering of carotenoid biosynthesis in H. pluvialis.  相似文献   

12.
13.
The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress conditions (high light or nutrient starvation); however, productivity of biomass and bioproducts are compromised due to the susceptibility of motile cells to stress. This study revealed that the Photosystem II (PSII) reaction center D1 protein, the manganese-stabilizing protein PsbO, and several major membrane glycerolipids (particularly for chloroplast membrane lipids monogalactosyldiacylglycerol and phosphatidylglycerol), decreased dramatically in motile cells under high light (HL). In contrast, palmella cells, which are transformed from motile cells after an extended period of time under favorable growth conditions, have developed multiple protective mechanisms—including reduction in chloroplast membrane lipids content, downplay of linear photosynthetic electron transport, and activating nonphotochemical quenching mechanisms—while accumulating triacylglycerol. Consequently, the membrane lipids and PSII proteins (D1 and PsbO) remained relatively stable in palmella cells subjected to HL. Introducing palmella instead of motile cells to stress conditions may greatly increase astaxanthin and lipid production in H. pluvialis culture.  相似文献   

14.
Natural astaxanthin is widely used as a food and cosmetics additive because of its multiple biological activities. However, astaxanthin produced by Haematococcus pluvialis is generally esterified, and its activity is far less than that of free astaxanthin. Hydrolysis of astaxanthin esters to free astaxanthin by enzymes can overcome the drawbacks of chemical saponification methods. In this paper, a slug-flow microchannel reactor was constructed and tested in enzymatic hydrolysis of astaxanthin esters. The reactor consists of a “T” slug-flow generator, a stainless-steel microchannel, two constant-flow pumps, and a temperature controller. The reactor has the advantages of simple configuration and easy scale-up, and is suitable for two-phase biochemical reactions. Using the microchannel reactor, astaxanthin esters in H. pluvialis oil were efficiently hydrolyzed to free astaxanthin by lipase from Aspergillus niger. After hydrolysis, the content of free astaxanthin in H. pluvialis oil was 18.8 mg/L, 7.83-times higher than that before hydrolysis (2.13 mg/L). The hydrolysis rate reached 75.4 %. These results indicate that the microchannel reactor can be useful for the production of free astaxanthin from its esters.  相似文献   

15.
The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids. Supported by the National Natural Science Foundation of China (Grant No. CNSF30570183), Chinese Academy of Science (KSCX2-YW-G-027) and Yunnan Provincial Sciences and Technology Department, China (2007AD009)  相似文献   

16.
An alternative microalgal system for biological wastewater treatment is proposed for both the removal of nitrogen and phosphorus from wastewater and the production of a valuable carotenoid, astaxanthin. The system consists of sequential photoautotrophic cultivation and induction processes using the green alga Haematococcus pluvialis. The Haematococcus process was applied to primary-treated sewage (PTS) and primary-treated piggery wastewater (PTP) with serial dilution. H. pluvialis grew well on PTS and PTP diluted four-fold, resulting in the successful removal of nitrogen and phosphorus from both wastewaters. At that time, cell growth rates were comparable to those in the algal-defined NIES-C medium. Following the cultivation stage, N-deprived vegetative cells were transformed under photoautotrophic induction by continuous feeding of both CO2-mixed gas and intense light to red aplanospores with substantial astaxanthin contents. The resulting astaxanthin contents accounted for about 5.1 and 5.9% of the total biomass of the PTS and PTP cultures, respectively. Our results indicate the potential of the proposed Haematococcus process as a subsidiary wastewater treatment technology with the capability of biosynthesizing the high-value antioxidant astaxanthin.  相似文献   

17.
18.
Abstract

The study of microalgal culture has been growing in recent decades, because the cellular structure of microalgae has diverse highly valuable metabolites that have attract attention of numerous companies and research groups. The pigment astaxanthin is considered one of the most powerful antioxidants in nature. The microalga Haematococcus pluvialis was proposed as one of the best natural astaxanthin sources, because it can accumulate high amount of the pigment. In this work, we studied different stress treatments on H. pluvialis growth cultures as well as astaxanthin production under autotrophic growth conditions. The results showed that extending nitrogen starvation before increasing radiation intensity up to 110?μmol photons m?2 s?1 during late the palmella cell phase incremented the astaxanthin concentration up to 2.7% of dry biomass with an efficient light energy utilization during the stress stage.  相似文献   

19.
Eom H  Lee CG  Jin E 《Planta》2006,223(6):1231-1242
The unicellular green alga Haematococcus pluvialis (Volvocales) is known for the ketocarotenoid astaxanthin (3, 3′-dihydroxy-β, β-carotene-4, 4′-dione) accumulation, which is induced under unfavorable culture conditions. In this work, we used cDNA microarray analysis to screen differentially expressed genes in H. pluvialis under astaxanthin-inductive culture conditions, such as combination of cell exposure to high irradiance and nutrient deprivation. Among the 965 genes in the cDNA array, there are 144 genes exhibiting differential expression (twofold changes) under these conditions. A significant decrease in the expression of photosynthesis-related genes was shown in astaxanthin-accumulating cells (red cells). Defense- or stress-related genes and signal transduction genes were also induced in the red cells. A comparison of microarray and real-time PCR analysis showed good correlation between the differentially expressed genes by the two methods. Our results indicate that the cDNA microarray approach, as employed in this work, can be relied upon and used to monitor gene expression profiles in H. pluvialis. In addition, the genes that were differentially expressed during astaxanthin induction are suitable candidates for further study and can be used as tools for dissecting the molecular mechanism of this unique pigment accumulation process in the green alga H. pluvialis. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号