首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 638 毫秒
1.
枯草芽胞杆菌作为一般认为安全(GRAS,Generally recognized as safe)菌株,被广泛应用于饲料、食品、生物防治等领域,同时,枯草芽胞杆菌作为表达宿主在工业酶的应用中扮演重要角色。然而,低效的芽胞形成率与感受态效率极大限制了枯草芽胞杆菌的应用潜力。尽管已有大量关于芽胞形成与感受态形成的分子遗传机制的研究报道,但是通过遗传改造提高枯草芽胞杆菌芽胞形成率与感受态效率的研究报道并不多。可能的原因是芽胞形成与感受态形成作为枯草芽胞杆菌生长后期两个主要的发育事件,受胞内复杂的遗传调控机制操纵,且两个遗传通路之间存在相互调控关系,对遗传改造工作形成挑战。随着基因工程与代谢工程研究的不断发展,积累了大量关于细胞生长、代谢与发育等方面的遗传信息,通过综合这些遗传信息构建细胞遗传调控网络,用于指导生产实践,已经成为当前研究的热点之一。基于此,本文简要概述了枯草芽胞杆菌芽胞形成和感受态形成的遗传通路,初步探讨了芽胞形成与感受态形成之间的遗传调控网络,及细胞在生长后期的遗传决定机制,并讨论了该遗传调控网络对枯草芽孢杆菌及其近缘种应用研究的指导作用。  相似文献   

2.
枯草芽胞杆菌作为革兰阳性模式菌株是基础研究和工业应用的常用宿主细胞。介绍了枯草芽胞杆菌中蛋白合成和分泌过程中的重要步骤及重要调控位点。在枯草芽胞杆菌蛋白表达及分泌系统中,可以针对目标基因在体内的转录、翻译、折叠、转运和菌株改造等方面对表达分泌系统进行优化改良,针对不同的目标蛋白,可进行不同优化模块的组装和拼搭,以达到针对目标蛋白产物定制化地提高产量和分泌量的目的。在未来,随着基因编辑和合成生物技术的发展,菌株改良策略的不断优化,枯草芽胞杆菌将会在工业生产蛋白质制品领域发挥更大的应用价值。  相似文献   

3.
枯草芽胞杆菌芽胞表面展示技术是把枯草芽胞杆菌作为芽胞表面展示的宿主来展示目的蛋白的一种技术。该技术不仅具备芽胞表面展示技术可展示分子量较大的目的蛋白、目的蛋白无需跨膜及芽胞的极强抗逆性等特点外,同时由于该技术的宿主菌--枯草芽胞杆菌的分子生物学信息研究得比较清楚、安全性高而被广泛应用。介绍了枯草芽胞杆菌表面展示近10年在生产疫苗和固定化酶方面的进展,并对如何提高表面展示目的蛋白的产量做了简要概述。  相似文献   

4.
【目的】研究假坚强芽胞杆菌OF4中乙醇脱氢酶和乙醛脱氢酶的酶学特性。【方法】通过引物设计,采用PCR技术从嗜碱芽胞杆菌OF4的基因组DNA中扩增获得乙醇脱氢酶(adh)基因和乙醛脱氢酶(aldh)基因,构建表达载体,通过异源原核表达,Ni-NTA柱层析纯化酶蛋白,分析其酶学特性。【结果】乙醛脱氢酶的最适反应温度为35℃,最适反应pH值为8.0,酶蛋白的活力为979.6 U/mg,其稳定性在25℃和35℃下比45℃稍好;尽管由于乙醇脱氢酶的表达量低而未能纯化获得酶蛋白,但通过双基因共表达及乙醇耐受性实验发现乙醇脱氢酶也具备较高的催化活性。【结论】成功地从假坚强芽胞杆菌OF4中克隆获得了乙醇脱氢酶和乙醛脱氢酶基因,二者共同作用能够较大提高宿主对乙醇的耐受性。  相似文献   

5.
苏云金芽胞杆菌制剂是目前世界上产量最大、使用最广的微生物杀虫剂.近年来,国内外研究人员在苏云金芽胞杆菌的功能基因组学领域开展了深入的研究,取得了丰硕的研究成果.本文拟就苏云金芽胞杆菌的基因组、转录组、蛋白质组及代谢组研究进展进行简要论述.  相似文献   

6.
短短芽胞杆菌分布广泛,并且在不同生长阶段,菌落形态也有所不同。目前已经完成2株短短芽胞杆菌的全基因组测序,但只对短短芽胞杆菌部分基因的功能进行了研究,如编码二硫化物氧化还原酶的基因bdb、α-乙酰乳酸脱羧酶的基因aldB、耐碱性木聚糖酶xylB基因和细胞壁的合成基因等,特别是具有抗菌活性的短杆菌酪肽的合成过程及所需酶的基因均有研究。短短芽胞杆菌在生物防治、作为分泌表达外源蛋白的宿主及环境治理等领域有广泛应用前景。  相似文献   

7.
朱梦奕  何璟 《微生物学通报》2013,40(10):1920-1928
大规模基因组测序发现放线菌基因组内包含有极丰富的天然产物合成基因, 是非常有价值的资源。放线菌基因组中负责天然产物合成的基因通常成簇存在。要想完整地克隆这些较大的基因簇并且进行功能研究, 或者通过异源表达激活原本沉默的天然产物合成基因簇, 需要大容量的载体系统和合适的异源宿主。本文重点介绍了放线菌中常用于基因组大片段克隆的载体及异源表达宿主改造的研究进展。  相似文献   

8.
芽胞衣壳蛋白CotB、CotC、CotG等可作为芽胞表面展示外源蛋白的分子载体,制备口服重组疫苗或具有催化活性的重组酶。CotX为枯草芽胞杆菌Bacillussubtilis芽胞衣壳中的另一种结构蛋白。为证明CotX能否作为分子载体将外源蛋白展示在芽胞表面,本研究将cotX基因与绿色荧光蛋白基因gfp的编码序列进行基因重组,构建融合表达CotX-GFP的整合型重组质粒,将该质粒转化枯草芽胞杆菌,筛选重组菌株并诱导产生芽胞,观察到重组芽胞表面具有GFP绿色荧光。结果表明枯草芽胞杆菌的芽胞衣壳蛋白CotX位于芽胞衣壳外层,可作为芽胞表面展示外源蛋白的载体分子。  相似文献   

9.
解淀粉芽胞杆菌作为公认的安全生产宿主菌(GRAS),在高效表达异源蛋白方面具有巨大的发展潜力和应用前景。本研究以解淀粉芽胞杆菌TCCC111018为出发菌株,通过敲除芽胞形成相关基因(spo0A,sigF和sigE),构建了一系列突变菌株(BAΔspo0A,BAΔsigF,BAΔsigE),并对突变株生物量和胞外酶表达量进行分析比较。结果表明,与出发菌株BAΔupp相比,菌株BAΔspo0A的生物量及胞外酶表达量显著降低,BAΔsigE无明显变化,而菌株BAΔsigF的生产性能有显著提升,菌体生长的稳定期延长约6 h,产酶时间提前,耐酸性α-淀粉酶与碱性蛋白酶酶活分别提高了25.2%和21.3%,该菌株的成功构建为工业酶生产宿主提供了新的选择,也为异源酶的高效生产提出了一种新的策略。  相似文献   

10.
PeaT1是从极细链格孢菌Alternaria tenuissima中分离的一种蛋白激发子,具有促进植物生长和诱导植物产生系统获得抗性的功能,为了实现peaT1基因在枯草芽胞杆菌Bacillus subtilis中的分泌表达,增加其应用途径,从枯草芽胞杆菌基因组DNA中分别扩增获得P43启动子和nprB基因的信号肽序列,并用SOE (Splicing by over lapping extension) 方法与peaT1基因连接,将连接产物克隆到大肠杆菌-枯草芽胞杆菌穿梭表达载体pHY300-PLK上,构建了重组表达载体pHY43N-peaT1。将重组载体转化枯草芽胞杆菌WB800菌株,SDS-PAGE和Western blotting分析证实,在NprB信号肽的引导下,枯草芽胞杆菌成功分泌表达了PeaT1蛋白。构建的重组菌株能够显著增强幼苗抗旱性,提高小麦株高。  相似文献   

11.
枯草杆菌表达系统的研究进展   总被引:15,自引:0,他引:15  
枯草杆菌由于具有非致病性、分泌蛋白能力强的特性的良好的发酵基础,是目前原核表达系统中分泌表达外源蛋白较理想的宿主。本阐述枯草杆菌基因表达的一般特点、表达载体、表达类型以及分泌表达存在的问题。  相似文献   

12.
Developments in the use of Bacillus species for industrial production   总被引:13,自引:0,他引:13  
Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-gamma-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.  相似文献   

13.
Bacillus protein secretion: an unfolding story   总被引:1,自引:0,他引:1  
Bacillus subtilis and its close relatives are widely used for the production of enzymes for the detergent, food and beverage industries. These organisms not only produce an appropriate range of enzymes but also have the capacity to secrete them into the culture medium at high concentrations. Purification from the culture medium rather than from the cytoplasm considerably reduces downstream processing costs. In recent years, considerable effort has been aimed at developing B. subtilis as a host for the production of heterologous proteins. The folded state of the target protein at various stages of the secretion pathway has proved to be important.  相似文献   

14.
Bacillus subtilis is a rod-shaped, Gram-positive soil bacterium that secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. These enzymes are produced commercially and this production represents about 60% of the industrial-enzyme market. Unfortunately, the secretion of heterologous proteins, originating from Gram-negative bacteria or from eukaryotes, is often severely hampered. Several bottlenecks in the B. subtilis secretion pathway, such as poor targeting to the translocase, degradation of the secretory protein, and incorrect folding, have been revealed. Nevertheless, research into the mechanisms and control of the secretion pathways will lead to improved Bacillus protein secretion systems and broaden the applications as industrial production host. This review focuses on studies that aimed at optimizing B. subtilis as cell factory for commercially interesting heterologous proteins.  相似文献   

15.
A major obstacle in investigating the biosynthesis of pharmacologically important peptide antibiotics is the heterologous expression of the giant biosynthetic genes. Recently, the genetically engineered strain Bacillus subtilis KE30 has been reported as an excellent surrogate host for the heterologous expression of an entire nonribosomal peptide synthetase (NRPS) gene cluster. In this study, we expand the applicability of this strain, by the development of four Escherichia coli/B. subtilis shuttle expression vectors. Comparative overproduction of hybrid NRPS proteins derived from both organisms revealed a significant beneficial effect of overproducing proteins in B. subtilis KE30 as underlined by the production of stable nondegradative proteins, as well as the formation of active phosphopantetheinylated holo-proteins.  相似文献   

16.
Nonribosomal peptides are processed on multifunctional enzymes called nonribosomal peptide synthetases (NRPSs), whose modular multidomain arrangement allowed the rational design of new peptide products. However, the lack of natural competence and efficient transformation methods for most of nonribosomal peptide producer strains prevented the in vivo manipulation of these biosynthetic gene clusters. In this study, we present methods for the construction of a genetically engineered Bacillus subtilis surrogate host for the integration and heterologous expression of foreign NRPS genes. In the B. subtilis surrogate host, we deleted the resident 26-kilobase srfA gene cluster encoding the surfactin synthetases and subsequently used the same chromosomal location for integration of the entire 49-kilobase bacitracin biosynthetic gene cluster from Bacillus licheniformis by a stepwise homologous recombination method. Synthesis of the branched cyclic peptide antibiotic bacitracin in the engineered B. subtilis strain was achieved at high level, indicating a functional production and proper posttranslational modification of the bacitracin synthetases BacABC, as well as the expression of the associated bacitracin self-resistance genes. This engineered and genetically amenable B. subtilis strain will facilitate the rational design of new bacitracin derivatives.  相似文献   

17.
Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.  相似文献   

18.
G F Hess  R S Graham 《Gene》1990,95(1):137-141
To promote more efficient synthesis of heterologous gene products in a Bacillus subtilis host, we have developed a system for rapidly testing the effect of a putative terminator on in vivo gene expression. Terminator structures from the Bacillus amyloliquefaciens amyE gene, the Bacillus licheniformis penP gene, the B. subtilis bglS gene, and the Bacillus thuringiensis cry gene were subcloned and inserted into a vector in such a way as to disrupt expression of the cat-86 gene. Comparisons are made between gene expression levels and the stabilities of the respective stem-loop structures.  相似文献   

19.
The chromosomal beta-lactamase (penicillinase, penP) gene from Bacillus licheniformis 749/C has been cloned in Escherichia coli. The locations of the target sites for various restriction enzymes on the 4.2-kilobase EcoRI fragment were determined. By matching the restriction mapping data with the potential nucleotide sequences of the penP gene deduced from known protein sequence, we established the exact position of the penP gene on the fragment. A bifunctional plasmid vector carrying the penP gene, plasmid pOG2165, was constructed which directs the synthesis of the heterologous beta-lactamase in both E. coli and Bacillus subtilis hosts. The protein synthesized in E. coli and B. subtilis is similar in size to the processed beta-lactamase made in B. licheniformis. Furthermore, the beta-lactamase made in B. subtilis is efficiently secreted by the host into the culture medium, indicating that B. subtilis is capable of carrying out the post-translational proteolytic cleavage(s) to convert the membrane-bound precursor enzyme into the soluble extracellular form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号