首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
狐尾藻与黑藻断枝的不定根和新芽的形成   总被引:2,自引:0,他引:2  
比较狐尾藻和黑藻2种沉水植物不同节位和不同长度断枝的不定根和新芽形成时间的结果表明,随着断枝节位的下降或断枝长度的增加,狐尾藻不定根的形成时间分别呈延长和缩短的趋势,其新芽均呈缩短趋势;而黑藻不定根的形成时间均呈缩短趋势,其新芽受节位与长度的影响不明显。  相似文献   

2.
本文比较研究了不同节位和不同长度狐尾藻断枝的不定根和芽的发生时间及其形成幼苗的频率(本文中的幼苗指最终形成了不定根和芽的断枝)。结果表明:在狐尾藻顶芽以下叶已完全展开的茎段部分,不定根和芽的发生时间呈现出随着节位下降而逐渐缩短的趋势,而幼苗形成频率呈现出随着节位下降而增高的趋势;断枝的长度(用断枝所含的茎节数表示)对不定根和芽的发生时间及幼苗形成频率也有明显的影响。断枝长度增加,不定根和芽的发生时间缩短,形成幼苗的频率升高。另外与抛掷方式相比,扦插延长多节断枝的不定根和芽形成时间,但提高幼苗的形成频率。这些研究结果为制定水体生态系统中狐尾藻的恢复和管理措施提供了参考。  相似文献   

3.
以取代系列实验方法研究了中等强度收割对菹草(Potamogeton crispus)和伊乐藻(Elodea nuttallii)种间竞争的影响。竞争攻击力、相对产量、相对竞争强度、相对拥挤系数等指标表明:收割前后伊乐藻的种间竞争能力强于菹草;收割前单独培养和混合培养的菹草在盖度方面较伊乐藻占有明显优势(P0.05),但收割后菹草的盖度分别显著降低了33.5%和45.3%(P0.05),而伊乐藻的盖度显著提高(P0.05),最终伊乐藻在盖度方面略占优势;收割前,单独培养和混合培养的菹草的株均干重显著地大于伊乐藻(P0.05),但收割后菹草的株均干重有所下降,伊乐藻的株均干重增长显著(P0.05);收割后,两种方式培养的菹草的株均干重显著地小于伊乐藻(P0.05);中等强度收割抑制了0~25cm和25 cm以上部位菹草的分枝和干物质的累积,但促进了伊乐藻在各层分枝和干物质的累积,这将有利于伊乐藻在竞争中取胜;此外,菹草与伊乐藻的种间竞争对植物根的生长影响较小。  相似文献   

4.
潘慧云  李小路  徐小花  高士祥 《生态学报》2008,28(12):6159-6164
研究了烯效唑对沉水植物伊乐藻生长及抗氧化酶活性的影响。结果表明,烯效唑可以刺激伊乐藻新芽萌发,新生枝条节间距减小,叶片紧密,同时烯效唑对成熟枝条的生长具有明显的抑制作用。低浓度(≤1.0mg/L)、短时间的烯效唑暴露可促进叶绿素a含量的增加,随着暴露时间的延长,处理组叶绿素a含量降低,叶绿素b含量显著增加。烯效唑胁迫下,伊乐藻体内3种抗氧化酶反应灵敏,SOD活性受到显著诱导,CAT活性先升高后降低,POD活性先升高后降低后又升高。说明烯效唑可对植物产生氧化胁迫,诱导抗氧化酶活性升高,当胁迫超过一定强度时,活性氧不能及时清除,对植物体产生氧化损伤。  相似文献   

5.
李宽意 《生态学杂志》2009,28(12):2624-2627
以外来种伊乐藻与土著种苦草为实验生物,通过室外受控实验研究了基质类型对2种水生植物种间关系的影响.结果表明:伊乐藻在2种不同营养水平的基质中均具有明显竞争优势.植物竞争(混栽伊乐藻)对低密度苦草的生长影响不明显,对密度高苦草抑制显著,然而基质类型对低密度苦草的生长影响显著,对高密度苦草无明显影响.同样,植物竞争(混栽苦草)对低密度伊乐藻的生长无明显影响,对密度高伊乐藻抑制显著,然而,无论种植密度高低,基质类型对伊乐藻的生长均有极大影响.本文还对伊乐藻与苦草的种间竞争关系机理进行了探讨,其研究结果对分析外来种入侵后水生植被的演变规律以及湖泊水生植被的管理有一定参考价值.  相似文献   

6.
为探讨蓝藻胁迫条件下沉水植物生长与基质营养含量的关系,研究了添加相同含量蓝藻后2 种不同基质(较贫瘠的黄色粘土和较肥沃的黑色淤泥)对苦草和伊乐藻2 种沉水植物生长的影响。结果表明:与伊乐藻相比,苦草的生物量在粘土条件下高于淤泥条件,而基质类型对伊乐藻生物量没有显著影响;苦草的最大叶片长度(用于表征株高)、无性系新株数目及其干物质重和伊乐藻的株高、分株数目和分枝干物质重也是在粘土条件下高于淤泥条件;苦草的最大根长在粘土条件下显著高于淤泥条件(p<0.05)。研究结果表明在蓝藻胁迫的条件下,高营养含量的基质不利于沉水植物的生长,并且对根生型沉水植物苦草的影响要大于假根沉水植物伊乐藻。  相似文献   

7.
李宽意  刘正文  杨宏伟  李娟  李传红 《生态学报》2007,27(10):4209-4213
在室外实验条件下,研究了模拟牧食损害(动物牧食所造成的损害)对伊乐藻植株生长的影响。结果表明:3种人工损害方式(去除植株50%叶片,去除植株顶端,以及同时去除植物顶端与50%叶片)对伊乐藻的生长率、主枝与分枝长度的增长、植物的干物质、氮、磷含量等均有不同程度的影响。其中,去叶与去顶去叶损害显著抑制了伊乐藻的生长,相对生长率分别占未受损植株的62.8%与74.4%;去顶与去顶去叶损害使伊乐藻主枝生长几乎停止,却显著促进了植物分枝的生长;去叶损害对植株的生长率、主枝与分枝长度的生长无明显抑制并却显著地降低了分枝的重量。对受损伊乐藻生长的机理进行了分析,探讨了东太湖伊乐藻现存量近年来迅速增加的原因并认为植物残体是伊乐藻种群扩张的重要因素之一。  相似文献   

8.
李宽意  刘正文  杨宏伟  李娟  李传红 《生态学报》2007,27(10):4209-4213
在室外实验条件下,研究了模拟牧食损害(动物牧食所造成的损害)对伊乐藻植株生长的影响。结果表明:3种人工损害方式(去除植株50%叶片,去除植株顶端,以及同时去除植物顶端与50%叶片)对伊乐藻的生长率、主枝与分枝长度的增长、植物的干物质、氮、磷含量等均有不同程度的影响。其中,去叶与去顶去叶损害显著抑制了伊乐藻的生长,相对生长率分别占未受损植株的62.8%与74.4%;去顶与去顶去叶损害使伊乐藻主枝生长几乎停止,却显著促进了植物分枝的生长;去叶损害对植株的生长率、主枝与分枝长度的生长无明显抑制并却显著地降低了分枝的重量。对受损伊乐藻生长的机理进行了分析,探讨了东太湖伊乐藻现存量近年来迅速增加的原因并认为植物残体是伊乐藻种群扩张的重要因素之一。  相似文献   

9.
为探讨外来种克氏原螯虾(Procambarus clarkii)对沉水植物牧食的偏好性和牧食强度, 采用投喂实验的方式, 研究了3种沉水植物刺苦草(Vallisneria spinulosa)、轮叶黑藻(Hydrilla verticillata)和伊乐藻(Elodea nuttallii)的适口性。结果表明, 克氏原螯虾对轮叶黑藻的取食速率最大(7.24±0.24 mg·d-1), 其次是苦草(3.70±1.14 mg·d-1), 伊乐藻最小(0.60±0.12 mg·d-1), 说明伊乐藻的适口性最差, 轮叶黑藻的适口性最好, 苦草的适口性居中。3种沉水植物的纤维素、多酚含量和氮含量都没有显著性差异, 而伊乐藻却具有更高的碳(C)含量和更高的碳氮比(C:N)。总体来说, 3种沉水植物的物理结构、碳(C)含量和碳氮比(C:N)在外来种克氏原螯虾对沉水植物的牧食中具有重要的作用。  相似文献   

10.
以不结球白菜(Brassica campestris L.ssp.chinensis Makino)子叶为外植体,考察壳寡糖对不结球白菜子叶离体培养再生体系的影响。在添加外源激素6.BA和NAA的条件下,比较了不同浓度(0.5、1.0、2.0和10.0mg·L^-1)壳寡糖对不结球白菜子叶形成愈伤组织、再生芽和再生不定根的影响。实验结果表明,低浓度的壳寡糖能促进子叶形成愈伤组织、再生芽。壳寡糖促进子叶形成愈伤组织和再生芽的最适浓度为0.5mg·L^-1,与其他浓度壳寡糖处理组相比,该浓度壳寡糖促进了子叶愈伤组织的形成,使出愈率达到92%。此外,该浓度壳寡糖能提高子叶的芽再生频率,使再生率达到80%,同时再生芽长度、叶绿素含量及外植体总鲜重达到最大,均显著高于对照组。然而,壳寡糖对再生芽生根有抑制作用,形成的不定根数目、平均根长和最长根长度均小于对照组。  相似文献   

11.
Clonal species are characterised by having a growth form in which roots and shoots originate from the same meristem so that adventitious nodal roots form close to the terminal apical bud of stems. The nature of the relationship between nodal roots and axillary bud growth was investigated in three manipulative experiments on cuttings of a single genotype of Trifolium repens. In the absence of locally positioned nodal roots axillary bud development within the apical bud proceeded normally until it slowed once the subtending leaf had matured to be the second expanded leaf on the stem. Excision of apical tissues indicated that while there was no apical dominance apparent within fully rooted stems and very little in stems with 15 or more unrooted nodes, the outgrowth of the two most distal axillary buds was stimulated by decapitation in stems with intermediate numbers of unrooted nodes. Excision of the basal branches from stems growing without local nodal roots markedly increased the length and/or number of leaves on 14 distally positioned branches. The presence of basal branches therefore prevented the translocation of root-supplied resources (nutrients, water, phytohormones) to the more distally located nodes and this caused the retardation in the outgrowth of their axillary buds. Based on all three experiments we conclude that the primary control of bud outgrowth is exerted by roots via the acropetal transport of root-supplied resources necessary for axillary bud outgrowth and that apical dominance plays a very minor role in the regulation of axillary bud outgrowth in T. repens.  相似文献   

12.
两种沉水植物黑藻和伊乐藻的种间竞争   总被引:3,自引:0,他引:3       下载免费PDF全文
采用取代系列实验方法,主要从竞争期的长短出发,研究了黑藻(Hydrilla verticillata)和伊乐藻(Elodea nuttallii)的种间竞争关系,并考查了在不同底质(土壤)肥力下两者种间竞争能力的变化情况。实验发现,伊乐藻由于具有较强的耐寒能力,在冬春时空竞争方面占有明显的优势,从而在周年实验中表现出较强的竞争优势,取代黑藻生长。而在短期实验中,黑藻由于可在水面生长形成较上位的冠层的特性,与伊乐藻相比在水体上层空间占领和阳光获取方面具有一定的优势,因此造成两种间竞争的不平衡,竞争偏利于黑藻,且这种优势随底质(土壤)肥力的增加而有所增强,但并没有明显取代现象的发生,两物种可以在混合种群中共存。  相似文献   

13.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

14.
贺竹梅  杨貌仙   《广西植物》1991,(4):316-323+396
本文详细报道了从秃杉(Taiwania flousiana Gaussen)离体胚诱导不定芽、不定根及从无菌苗茎端培养再生植株的过程。诱导不定芽要求较低的蔗糖浓度(以3%最好);同时BA是必须的,在附加0.1—3 mg/1 BA的White培养基上,从离体胚的子叶或胚轴上诱导了不定芽的发生(以1 mg/1最好);NAA与BA结合使用,对不定芽诱导无促进作用;适当提高光照有利于不定芽的诱导。在诱导不定芽的同时,在子叶表面还观察到有许多无结构的“不定突起”。不定芽起源于子叶表皮下1—2层细胞。IBA对诱导离体胚上产生不定根效果较好。在有或无生长素的培养基上,从生长1月龄的无菌苗茎端培养获得了不定根的产生,在加有细胞分裂索的培养基上,从无菌苗上产生了腋芽。  相似文献   

15.
1. The experiments show that the mass of air roots formed in a stem increases with the mass of the leaf attached to the stem, though it has not been possible to establish an exact mathematical relation between the two masses, owing to unavoidable sources of error. 2. Darkened leaves do not increase the mass of roots formed. 3. In stems suspended horizontally air roots appear on the lower side of the stem, with the exception of the cut end where they usually appear around the whole circumference of the stem. When the lower half of a stem suspended horizontally is cut off, roots are formed on the upper side. It is shown by experiments on leaves suspended horizontally that the more rapidly growing roots and shoots on the lower side inhibit the root and shoot formation in the upper half of such a leaf; and likewise the more rapid formation of roots on the lower side of a horizontally suspended stem seems to account for the inhibition of root formation on the upper side of such a stem. Likewise the more rapid growth of shoots on the upper side of a stem suspended horizontally is likely to inhibit the growth of shoots on the lower side. 4. Each leaf contains in its axil a preformed bud capable of giving rise to a root, which never grows out in the normal stem on account of the inhibitory influence of the normal roots at the base of the plant. These dormant root buds are situated above (apically from) the dormant shoot bud. The apical root buds can be caused to develop into air roots when a piece of stem is cut out from a plant from which the leaves except those in the basal node of the piece are removed. The larger these basal leaves the better the experiments succeed. 5. These apical air roots grow out in a few days, while the roots at the basal end of the stem (which in our experiments dip into water) grow out about a week later. As soon as the basal roots grow out in water they cause the air roots in the more apical region of the stem to dry out and to disappear. 6. In addition to the basal roots, basal nodes have also an inhibitory effect on the growth of the dormant root buds in the apical region of a stem. This is indicated by the fact that a stem with one pair of leaves near the base will form apical air roots more readily when no node is situated on the stem basally from the leaf than if there is a node basally from the leaf.  相似文献   

16.
The flowering response of axillary buds of seedlings of Pharbitis nil Choisy, cv. Violet, was examined in relation to the timing of apical bud removal (plumule including the first leaf or second leaf) before or after a flower-inductive 16-h dark period. When the apical bud was removed well before the dark period, flower buds formed on the axillary shoots that subsequently developed, but when removed just before, or after, the dark period, different results were observed depending on the timing of the apical bud removal and plant age. In the case of 8-day-old seedlings, fewer flower buds formed on the axillary shoots developing from the cotyledonary node when plumules were removed 20 to 0 h before the dark period. When the apical bud was removed after the dark period, no flower buds formed. Using 14-day-old seedlings a similar reduction of flowering response was observed on the axillary shoots developing from the first leaf node when the apical bud was removed just after the dark period. To further elucidate the relationship between apical dominance and flowering, kinetin or IAA was applied to axillary buds or the cut site where the apical bud was located. Both chemicals influenced flowering, probably by modulating apical dominance which normally forces axillary buds to be dormant.  相似文献   

17.
A mature, quiescent, primary axillary bud on the main axis of a flowering Nicotiana tabacum cv. Wisconsin 38 plant, when released from apical dominance and before forming its terminal flower, produced a number of nodes which was dependent upon its position on the main axis. Each bud produced about one more node than the next bud above it. The total number of nodes produced by an axillary bud was about 6 to 8 greater than the number of nodes present above this bud on the main axis. At anthesis of the terminal flower on the main axis, mature, quiescent, primary axillary buds had initiated 7 to 9 leaf primordia while secondary axillary buds, sometimes present in addition to the primary ones, had initiated 4 to 5 leaf primordia. When permitted to grow out independently, primary and secondary axillary buds located at the same node on the main axis produced the same number of nodes before forming their terminal flowers. In contrast, immature primary axillary buds which had produced only 5 leaf primordia and which were released from apical dominance prior to the formation of flowers on the main axis produced only as many nodes as would be produced above them on the main axis by the terminal meristem, i.e., “extra” nodes were not produced. Therefore, it is the physiological status of the plant and not the number of nodes on the bud at the time of release from apical dominance that influenced the node-counting process of a bud. When two axillary buds were permitted to develop on the same main axis, each produced the same number of nodes as single axillary buds developing at these nodes. Thus, the counting process in an axillary bud of tobacco is independent of other buds. Axillary buds on main axes of plants that had been placed horizontally produced the same number of nodes as identically-positioned axillary buds on vertical plants, indicating that gravity does not play a major role in the counting, by an axillary bud, of the nodes on the main axis.  相似文献   

18.
The numbers of nodes on single flush terminal and axillary shootmodules were determined in a range of Persea species and cultivars.They were compared with node numbers in apical and axillarybuds to investigate whether preformation or neoformation ofnodes occurred. Mean number of nodes on terminal shoots was14 for vegetative shoot modules and 21 for reproductive shootmodules, and was similar across species, cultivars, rootstocks,locations and climates. In the cultivar 'Hass', numbers of nodeson axillary shoot modules were variable, and lower than thosefor primary shoot modules forming the dominant growth axis ofannual growth modules. There was a mean of 12 nodes for vegetativeproleptic shoot modules, 15 for reproductive proleptic shootmodules and six for sylleptic shoot modules, which were invariablyvegetative. All nodes were preformed within both apical andaxillary proleptic buds. This was not the case in syllepticbuds, which burst contemporaneously with extension of the parentaxis. The majority (63%) of reproductive buds formed indeterminatecompound inflorescences. They carried six basal bud scales,six axillary inflorescences and their subtending bracts, andup to nine true leaves.Copyright 1994, 1999 Academic Press Persea Clus., avocado, Persea americana Mill., bud morphology, shoot growth, preformation, prolepsis  相似文献   

19.
EXPERIMENTS WITH ROOT CUTTINGS OF BRUSSELS SPROUT   总被引:1,自引:0,他引:1  
A technique for the propagation of Brussels sprout by means of root cuttings is described. Adventitious shoots arise exogenously on callus tissue which develops around the base of side roots. Cuttings sometimes rot without forming adventitious shoots, and cuttings which remain sound do not all produce shoots. Rotting may largely be prevented by planting cuttings with the proximal end exposed above the surface of the medium, and by allowing the root portions to dry before planting. Surface sterilization with mercuric chloride controls rotting but reduces bud formation. Individual plants differ in their capacity to form buds on root cuttings, and this difference is carried by the clones derived from them. Portions of root form more buds if cut into several pieces than if planted intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号