首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cation levels within the cytosol are coordinated by a network of transporters. Here, we examine the functional roles of calcium exchanger 1 (CAX1), a vacuolar H+/Ca2+ transporter, and the closely related transporter CAX3. We demonstrate that like CAX1, CAX3 is also localized to the tonoplast. We show that CAX1 is predominately expressed in leaves, while CAX3 is highly expressed in roots. Previously, using a yeast assay, we demonstrated that an N-terminal truncation of CAX1 functions as an H+/Ca2+ transporter. Here, we use the same yeast assay to show that full-length CAX1 and full-length CAX3 can partially, but not fully, suppress the Ca2+ hypersensitive yeast phenotype and coexpression of full-length CAX1 and CAX3 conferred phenotypes not produced when either transporter was expressed individually. In planta, CAX3 null alleles were modestly sensitive to exogenous Ca2+ and also displayed a 22% reduction in vacuolar H+-ATPase activity. cax1/cax3 double mutants displayed a severe reduction in growth, including leaf tip and flower necrosis and pronounced sensitivity to exogenous Ca2+ and other ions. These growth defects were partially suppressed by addition of exogenous Mg2+. The double mutant displayed a 42% decrease in vacuolar H+/Ca2+ transport, and a 47% decrease in H+-ATPase activity. While the ionome of cax1 and cax3 lines were modestly perturbed, the cax1/cax3 lines displayed increased PO4(3-), Mn2+, and Zn2+ and decreased Ca2+ and Mg2+ in shoot tissue. These findings suggest synergistic function of CAX1 and CAX3 in plant growth and nutrient acquisition.  相似文献   

2.
Ca(2+) levels in plants, fungi, and bacteria are controlled in part by H(+)/Ca(2+) exchangers; however, the relationship between primary sequence and biological activity of these transporters has not been reported. The Arabidopsis H(+)/cation exchangers, CAX1 and CAX2, were identified by their ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. CAX1 has a much higher capacity for Ca(2+) transport than CAX2. An Arabidopsis thaliana homolog of CAX1, CAX3, is 77% identical (93% similar) and, when expressed in yeast, localized to the vacuole but did not suppress yeast mutants defective in vacuolar Ca(2+) transport. Chimeric constructs and site-directed mutagenesis showed that CAX3 could suppress yeast vacuolar Ca(2+) transport mutants if a nine-amino acid region of CAX1 was inserted into CAX3 (CAX3-9). Biochemical analysis in yeast showed CAX3-9 had 36% of the H(+)/Ca(2+) exchange activity as compared with CAX1; however, CAX3-9 and CAX1 appear to differ in their transport of other ions. Exchanging the nine-amino acid region of CAX1 into CAX2 doubled yeast vacuolar Ca(2+) transport but did not appear to alter the transport of other ions. This nine-amino acid region is highly variable among the plant CAX-like transporters. These findings suggest that this region is involved in CAX-mediated Ca(2+) specificity.  相似文献   

3.
Characterization of CAX4, an Arabidopsis H(+)/cation antiporter   总被引:1,自引:0,他引:1  
  相似文献   

4.
Cheng NH  Liu JZ  Nelson RS  Hirschi KD 《FEBS letters》2004,559(1-3):99-106
Precise regulation of calcium transporters is essential for modulating the Ca2+ signaling network that is involved in the growth and adaptation of all organisms. The Arabidopsis H+/Ca2+ antiporter, CAX1, is a high capacity and low affinity Ca2+ transporter and several CAX1-like transporters are found in Arabidopsis. When heterologously expressed in yeast, CAX1 is unable to suppress the Ca2+ hypersensitivity of yeast vacuolar Ca2+ transporter mutants due to an N-terminal autoinhibition mechanism that prevents Ca2+ transport. Using a yeast screen, we have identified CAX nteracting Protein 4 (CXIP4) that activated full-length CAX1, but not full-length CAX2, CAX3 or CAX4. CXIP4 encodes a novel plant protein with no bacterial, fungal, animal, or mammalian homologs. Expression of a GFP-CXIP4 fusion in yeast and plant cells suggests that CXIP4 is targeted predominantly to the nucleus. Using a yeast growth assay, CXIP4 activated a chimeric CAX construct that contained specific portions of the N-terminus of CAX1. Together with other recent studies, these results suggest that CAX1 is regulated by several signaling molecules that converge on the N-terminus of CAX1 to regulate H+/Ca2+ antiport.  相似文献   

5.
Here we demonstrate that fruit from tomato (Lycopersicon esculentum) plants expressing Arabidopsis (Arabidopsis thaliana) H(+)/cation exchangers (CAX) have more calcium (Ca2+) and prolonged shelf life when compared to controls. Previously, using the prototypical CAX1, it has been demonstrated that, in yeast (Saccharomyces cerevisiae) cells, CAX transporters are activated when the N-terminal autoinhibitory region is deleted, to give an N-terminally truncated CAX (sCAX), or altered through specific manipulations. To continue to understand the diversity of CAX function, we used yeast assays to characterize the putative transport properties of CAX4 and N-terminal variants of CAX4. CAX4 variants can suppress the Ca2+ hypersensitive yeast phenotypes and also appear to be more specific Ca2+ transporters than sCAX1. We then compared the phenotypes of sCAX1- and CAX4-expressing tomato lines. The sCAX1-expressing tomato lines demonstrate increased vacuolar H(+)/Ca2+ transport, when measured in root tissue, elevated fruit Ca2+ level, and prolonged shelf life but have severe alterations in plant development and morphology, including increased incidence of blossom-end rot. The CAX4-expressing plants demonstrate more modest increases in Ca2+ levels and shelf life but no deleterious effects on plant growth. These findings suggest that CAX expression may fortify plants with Ca2+ and may serve as an alternative to the application of CaCl2 used to extend the shelf life of numerous agriculturally important commodities. However, judicious regulation of CAX transport is required to assure optimal plant growth.  相似文献   

6.
Regulation of Ca(2+) transport determines the duration of a Ca(2+) signal, and hence, the nature of the biological response. Ca(2+)/H+ antiporters such as CAX1 (cation exchanger 1), play a key role in determining cytosolic Ca(2+) levels. Analysis of a full-length CAX1 clone suggested that the CAX1 open reading frame contains an additional 36 amino acids at the N terminus that were not found in the original clone identified by suppression of yeast (Saccharomyces cerevisiae) vacuolar Ca(2+) transport mutants. The long CAX1 (lCAX1) could not suppress the yeast Ca(2+) transport defects despite localization to the yeast vacuole. Calmodulin could not stimulate lCAX1 Ca(2+)/H+ transport in yeast; however, minor alterations in the 36-amino acid region restored Ca(2+)/H+ transport. Sequence analysis suggests that a 36-amino acid N-terminal regulatory domain may be present in all Arabidopsis CAX-like genes. Together, these results suggest a structural feature involved in regulation of Ca(2+)/H+ antiport.  相似文献   

7.
In plants and fungi, vacuolar transporters help remove potentially toxic cations from the cytosol. Metal/H(+) antiporters are involved in metal sequestration into the vacuole. However, the specific transport properties and the ability to manipulate these transporters to alter substrate specificity are poorly understood. The Arabidopsis thaliana cation exchangers, CAX1 and CAX2, can both transport Ca(2+) into the vacuole. There are 11 CAX-like transporters in Arabidopsis; however, CAX2 was the only characterized CAX transporter capable of vacuolar Mn(2+) transport when expressed in yeast. To determine the domains within CAX2 that mediate Mn(2+) specificity, six CAX2 mutants were constructed that contained different regions of the CAX1 transporter. One class displayed no alterations in Mn(2+) or Ca(2+) transport, the second class showed a reduction in Ca(2+) transport and no measurable Mn(2+) transport, and the third mutant, which contained a 10-amino acid domain from CAX1 (CAX2-C), showed no reduction in Ca(2+) transport and a complete loss of Mn(2+) transport. The subdomain analysis of CAX2-C identified a 3-amino acid region that is responsible for Mn(2+) specificity of CAX2. This study provides evidence for the feasibility of altering substrate specificity in a metal/H(+) antiporter, an important family of transporters found in a variety of organisms.  相似文献   

8.
9.
The regulation of intracellular Ca(2+) levels is achieved in part by high-capacity vacuolar Ca(2+)/H(+) antiporters. An N-terminal regulatory region (NRR) on the Arabidopsis Ca(2+)/H(+) antiporter CAX1 (cation exchanger 1) has been shown previously to regulate Ca(2+) transport by a mechanism of N-terminal auto-inhibition. Here, we examine the regulation of other CAX transporters, both within Arabidopsis and from another plant, mung bean (Vigna radiata), to ascertain if this mechanism is commonly used among Ca(2+)/H(+) antiporters. Biochemical analysis of mung bean VCAX1 expressed in yeast (Saccharomyces cerevisiae) showed that N-terminal truncated VCAX1 had approximately 70% greater antiport activity compared with full-length VCAX1. A synthetic peptide corresponding to the NRR of CAX1, which can strongly inhibit Ca(2+) transport by CAX1, could not dramatically inhibit Ca(2+) transport by truncated VCAX1. The N terminus of Arabidopsis CAX3 was also shown to contain an NRR. Additions of either the CAX3 or VCAX1 regulatory regions to the N terminus of an N-terminal truncated CAX1 failed to inhibit CAX1 activity. When fused to N-terminal truncated CAX1, both the CAX3 and VCAX1 regulatory regions could only auto-inhibit CAX1 after mutagenesis of specific amino acids within this NRR region. These findings demonstrate that N-terminal regulation is present in other plant CAX transporters, and suggest distinct regulatory features among these transporters.  相似文献   

10.
Several Arabidopsis CAtion eXchangers (CAXs) encode tonoplast-localized transporters that appear to be major contributors to vacuolar accumulation/sequestration of cadmium (Cd(2+)), an undesirable pollutant ion that occurs in man largely as a result of dietary consumption of aerial tissues of food plants. But, ion-selectivity of individual CAX transporter types remains largely unknown. Here, we transformed Nicotiana tabacum with several CAX genes driven by the Cauliflower Mosaic Virus (CaMV) 35S promoter and monitored divalent cation transport in root-tonoplast vesicles from these plants in order to select particular CAX genes directing high Cd(2+) antiporter activity in root tonoplast. Comparison of seven different CAX genes indicated that all transported Cd(2+), Ca(2+), Zn(2+), and Mn(2+) to varying degrees, but that CAX4 and CAX2 had high Cd(2+) transport and selectivity in tonoplast vesicles. CAX4 driven by the CaMV 35S and FS3 [figwort mosaic virus (FMV)] promoters increased the magnitude and initial rate of Cd(2+)/H(+) exchange in root-tonoplast vesicles. Ion selectivity of transport in root-tonoplast vesicles isolated from FS3::CAX4-expressing plant lines having a range of gene expression was Cd(2+)>Zn(2+)>Ca(2+)>Mn(2+) and the ratios of maximal Cd(2+) (and Zn(2+)) versus maximal Ca(2+) and Mn(2+) transport were correlated with the levels of CAX4 expression. Root Cd accumulation in high CAX4 and CAX2 expressing lines was increased in seedlings grown with 0.02 muM Cd. These observations are consistent with a model in which expression of an Arabidopsis-gene-encoded, Cd(2+)-efficient antiporter in host plant roots results in greater root vacuole Cd(2+) transport activity, increased root Cd accumulation, and a shift in overall root tonoplast ion transport selectivity towards higher Cd(2+) selectivity. Results support a model in which certain CAX antiporters are somewhat more selective for particular divalent cations.  相似文献   

11.
植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展   总被引:1,自引:0,他引:1  
阳离子转运蛋白在调节细胞质阳离子浓度过程中发挥关键作用。液泡是一个储存多种离子的重要细胞器,阳离子 (Ca2+)/H+反向转运蛋白CAXs定位在液泡膜上,主要参与Ca2+向液泡的转运,也参与其他阳离子的转运。近年来,植物中分离鉴定了多个CAX基因,植物CAXs主要有4个功能域:NRR通过自抑制机制调节Ca2+转运活性,CaD和C功能域分别赋予CAXs的Ca2+和Mn2+专一性转运活性,D功能域可调节细胞质pH。拟南芥AtCAXs参与植物的生长发育和胁迫适应过程,AtCAX3主要在盐胁迫下转运Ca2+,At  相似文献   

12.
In plants, the cation/H+ exchanger (CAX) translocates Ca2+ and other metal ions into vacuoles using the H+ gradient formed by H+-ATPase and H+-pyrophosphatase. Such exchangers carrying 11 transmembrane domains (TMs) have been isolated from plants, yeast, and bacteria. In this study, multiple sequence alignment of several CAXs revealed the presence of highly conserved 36-residue regions between TM3 and TM4 and between TM8 and TM9. These two repetitive motifs are designated repeats c-1 and c-2. Using site-directed mutagenesis, we generated 31 mutations in the repeats of the Oryza sativa CAX, which translocates Ca2+ and Mn2+. Mutant exchangers were expressed in a Saccharomyces cerevisiae strain that is sensitive to Ca2+ and Mn2+ because of the absence of vacuolar Ca2+-ATPase and the Ca2+/H+ exchanger. Mutant exchangers were classified into six classes according to their tolerance for Ca2+ and Mn2+. For example, the class III mutants had no tolerance for either ion, and the class IV mutants had tolerance only for Ca2+. The biochemical function of each residue was estimated. We investigated the membrane topology of the repeats using a method combining cysteine mutagenesis and sulfhydryl reagents. Our results suggest that repeat c-1 re-enters the membrane from the vacuolar luminal side and forms a solution-accessible region. Furthermore, several residues in repeats c-1 and c-2 were found to be conserved in animal Na+/Ca2+ exchangers. Finally, we suggest that these re-entrant repeats may form a vestibule or filter for cation selection.  相似文献   

13.
Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this N-terminus, show CAX1-mediated Ca(2+)/H(+) antiport activity. Furthermore, transgenic plants expressing sCAX1 display increased Ca(2+) accumulation and heightened activity of vacuolar Ca(2+)/H(+) antiport. Here the properties of N-terminal CAX1 variants in plants and yeast expression systems are compared and contrasted to determine if autoinhibition of CAX1 is occurring in planta. Initially, using ionome analysis, it has been demonstrated that only yeast cells expressing activated CAX1 transporters have altered total calcium content and fluctuations in zinc and nickel. Tobacco plants expressing activated CAX1 variants displayed hypersensitivity to ion imbalances, increased calcium accumulation, heightened concentrations of other mineral nutrients such as potassium, magnesium and manganese, and increased activity of tonoplast-enriched Ca(2+)/H(+) transport. Despite high in planta gene expression, CAX1 and N-terminal variants of CAX1 which were not active in yeast, displayed none of the aforementioned phenotypes. Although several plant transporters appear to contain N-terminal autoinhibitory domains, this work is the first to document clearly N-terminal-dependent regulation of a Ca(2+) transporter in transgenic plants. Engineering the autoinhibitory domain thus provides a strategy to enhance transport function to affect agronomic traits.  相似文献   

14.
Cd2+ and other divalent metals mobilized cell Ca2+ in human skin fibroblasts. The divalent metals produced a large spike in cytosolic free Ca2+ and strikingly increased net Ca2+ efflux similarly to bradykinin. One-tenth microM Cd2+ half-maximally increased 45Ca2+ efflux. The potency order of the Ca2+ mobilizing metals was: Cd2+ greater than Co2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Cd2+ probably acts at an extracellular site because loading the cells with a heavy metal chelator only slightly inhibited Cd2+-evoked 45Ca2+ efflux. Cd2+ increased [3H]inositol polyphosphates; [3H]inositol trisphosphate increased 4-fold in 15 s. Zn2+ reversibly blocked 45Ca2+ efflux evoked by Cd2+ but not that produced by bradykinin. Zn2+ competitively (Ki = approximately 0.4 microM) inhibited net Ca2+ efflux produced by Cd2+. Cd2+ also evoked Ca2+ mobilization in umbilical artery muscle, endothelial, and neuroblastoma cells, and the divalent cation agonist and antagonist specificities were similar to those in the fibroblasts. The divalent metals appear to trigger Ca2+ mobilization via a reversible interaction with an external site on the cell surface, which may be considered a "Cd2+ receptor."  相似文献   

15.
The Arabidopsis Ca(2+)/H(+) antiporters cation exchanger (CAX) 1 and 2 utilise an electrochemical gradient to transport Ca(2+) into the vacuole to help mediate Ca(2+) homeostasis. Previous whole plant studies indicate that activity of Ca(2+)/H(+) antiporters is regulated by pH. However, the pH regulation of individual Ca(2+)/H(+) antiporters has not been examined. To determine whether CAX1 and CAX2 activity is affected by pH, Ca(2+)/H(+) antiport activity was measured in vacuolar membrane vesicles isolated from yeast heterologously expressing either transporter. Ca(2+) transport by CAX1 and CAX2 was regulated by cytosolic pH and each transporter had a distinct cytosolic pH profile. Screening of CAX1/CAX2 chimeras identified an amino acid domain within CAX2 that altered the pH-dependent Ca(2+) transport profile so that it was almost identical to the pH profile of CAX1. Results from mutagenesis of a specific His residue within this domain suggests a role for this residue in pH regulation.  相似文献   

16.
Regulation of Ca(2+)/H(+) antiporters may be an important function in determining the duration and amplitude of cytosolic Ca(2+) oscillations. Previously the Arabidopsis Ca(2+)/H(+) transporter, CAX1 (cation exchanger 1), was identified by its ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. Recently, a 36-amino acid N-terminal regulatory region on CAX1 has been identified that inhibits CAX1-mediated Ca(2+)/H(+) antiport. Here we show that a synthetic peptide designed against the CAX1 36 amino acids inhibited Ca(2+)/H(+) transport mediated by an N-terminal-truncated CAX1 but did not inhibit Ca(2+) transport by other Ca(2+)/H(+) antiporters. Ca(2+)/H(+) antiport activity measured from vacuolar-enriched membranes of Arabidopsis root was also inhibited by the CAX1 peptide. Through analyzing CAX chimeric constructs the region of interaction of the N-terminal regulatory region was mapped to include 7 amino acids (residues 56-62) within CAX1. The CAX1 N-terminal regulatory region was shown to physically interact with this 7-amino acid region by yeast two-hybrid analysis. Mutagenesis of amino acids within the N-terminal regulatory region implicated several residues as being essential for regulation. These findings describe a unique mode of antiporter autoinhibition and demonstrate the first detailed mechanisms for the regulation of a Ca(2+)/H(+) antiporter from any organism.  相似文献   

17.
18.
The regulation of ions within cells is an indispensable component of growth and adaptation. The plant SOS2 protein kinase and its associated Ca(2+) sensor, SOS3, have been demonstrated to modulate the plasma membrane H(+)/Na(+) antiporter SOS1; however, how these regulators modulate Ca(2+) levels within cells is poorly understood. Here we demonstrate that SOS2 regulates the vacuolar H(+)/Ca(2+) antiporter CAX1. Using a yeast growth assay, co-expression of SOS2 specifically activated CAX1, whereas SOS3 did not. CAX1-like chimeric transporters were activated by SOS2 if the chimeric proteins contained the N terminus of CAX1. Vacuolar membranes from CAX1-expressing cells were made to be H(+)/Ca(2+)-competent by the addition of SOS2 protein in a dose-dependent manner. Using a yeast two-hybrid assay, SOS2 interacted with the N terminus of CAX1. In each of these yeast assays, the activation of CAX1 by SOS2 was SOS3-independent. In planta, the high level of expression of a deregulated version of CAX1 caused salt sensitivity. These findings suggest multiple functions for SOS2 and provide a mechanistic link between Ca(2+) and Na(+) homeostasis in plants.  相似文献   

19.
In plants, high capacity tonoplast cation/H+ antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca2+ transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca2+ transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca2+ transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.  相似文献   

20.
Plant calcium (Ca(2+)) gradients, millimolar levels in the vacuole and micromolar levels in the cytoplasm, are regulated in part by high-capacity vacuolar cation/H(+) exchangers (CAXs). Several CAX transporters, including CAX1, appear to contain an approximately 40-amino acid N-terminal regulatory region (NRR) that modulates transport through N-terminal autoinhibition. Deletion of the NRR from several CAXs (sCAX) enhances function in plant and yeast expression assays; however, to date, there are no functional assays for CAX3 (or sCAX3), which is 77% identical and 91% similar in sequence to CAX1. In this report, we create a series of truncations in the CAX3 NRR and demonstrate activation of CAX3 in both yeast and plants by truncating a large portion (up to 90 amino acids) of the NRR. Experiments with endomembrane-enriched vesicles isolated from yeast expressing activated CAX3 demonstrate that the gene encodes Ca(2+)/H(+) exchange with properties distinct from those of CAX1. The phenotypes produced by activated CAX3-expressing in transgenic tobacco lines are also distinct from those produced by sCAX1-expressing plants. These studies demonstrate shared and unique aspects of CAX1 and CAX3 transport and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号