首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA encoding the Arabidopsis thaliana uridine 5′-monophosphate (UMP)/cytidine 5′-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 μm when UMP is the other substrate and Km = 292 μm when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 μm) and CMP (Km = 266 μm) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5′) pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.  相似文献   

2.
The initial membrane reaction in the biosynthesis of peptidoglycan is catalyzed by phospho-N-acetylmuramyl (MurN Ac)-pentapeptide translocase (UDP-MurNAc-Ala-gamma DGlu-Lys-DAla-DAla undecaprenyl phosphate phospho-MurNAc-pentapeptide transferase). In addition to the transfer reaction, the enzyme catalyzes the exchange of [3H]uridine monophosphate with the uridine monophosphate moiety of UDP-MurN Ac-pentapeptide. Two distinct discontinuities are observed in the slopes of the Arrhenius plots of the exchange and transfer activities at 22 and 30 degrees C for the enzyme from Staphylococcus aureus Copenhagen. Anisotropy measurements of perylene fluorescence and electron spin resonance measurements of N-oxyl-4',4'-dimethyloxazolidine derivatives of 12- and 16-ketostearic acid intercalated into membranes from this organism define the lower (T1 = 16--22 degrees C) and upper (Th = 30 degrees C) boundaries of a phase transition. These values correlate with the discontinuities observed for the activity measurements. Thus, it is proposed that the physical state of the lipid micro-environment of phospho-MurNAc-penetapeptide translocase has a significant effect on the catalytic activity of this enzyme.  相似文献   

3.
A determination of the relative affinity of vancomycin and ristocetin for isolated cell walls and for a peptidoglycan precursor was made. These antibiotics had previously been shown to adsorb to cell walls and to complex with peptides containing a d-alanyl-d-alanine C-terminus. By using (14)C-uridine diphosphate (UDP)-N-acetylmuramyl pentapeptide, it was shown that the complex which is formed between this peptidoglycan precursor and either vancomycin or ristocetin does not preclude adsorption of the antibiotics to cell walls of Micrococcus lysodeikticus. Complex formation between ristocetin and UDP-N-acetylmuramyl pentapeptide was assured by differential absorption spectra. However, when the complex was mixed with cell walls, the antibiotic was sedimented with the walls, and the radioactivity remained in the supernatant solution. This indication that ristocetin and vancomycin have a greater affinity for walls than for UDP-N-acetylmuramyl pentapeptide and that the complex per se does not bind to cell walls suggests that adsorption of these antibiotics to cell walls is probably responsible for the inhibition of peptidoglycan synthesis. This proposal is strengthened by the observation that complexed antibiotic is no less inhibitory for growth of Bacillus subtilis than free vancomycin or ristocetin.  相似文献   

4.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

5.
A highly vancomycin-resistant mutant (MIC = 100 microg/ml) of Staphylococcus aureus, mutant VM, which was isolated in the laboratory by a step-pressure procedure, continued to grow and synthesize peptidoglycan in the presence of vancomycin (50 microg/ml) in the medium, but the antibiotic completely inhibited cell wall turnover and autolysis, resulting in the accumulation of cell wall material at the cell surface and inhibition of daughter cell separation. Cultures of mutant VM removed vancomycin from the growth medium through binding the antibiotic to the cell walls, from which the antibiotic could be quantitatively recovered in biologically active form. Vancomycin blocked the in vitro hydrolysis of cell walls by autolytic enzyme extracts, lysostaphin and mutanolysin. Analysis of UDP-linked peptidoglycan precursors showed no evidence for the presence of D-lactate-terminating muropeptides. While there was no significant difference in the composition of muropeptide units of mutant and parental cell walls, the peptidoglycan of VM had a significantly lower degree of cross-linkage. These observations and the results of vancomycin-binding studies suggest alterations in the structural organization of the mutant cell walls such that access of the vancomycin molecules to the sites of wall biosynthesis is blocked.  相似文献   

6.
The initial membrane reaction in the biosynthesis of peptidoglycan is catalyzed by phospho-N-acetylmuramyl (MurNAc)-pentapeptide translocase (UDP-MurNAc-Ala-γ dGlu-Lys-dAla-dAla undecaprenyl phosphate phospho-MurN Acpentapeptide transferase). In addition to the transfer reaction, the enzyme catalyzes the exchange of [3H]uridine monophosphate with the uridine monophosphate moiety of UDP-MurN Ac-pentapeptide. Two distinct discontinuities are observed in the slopes of the Arrhenius plots of the exchange and transfer activities at 22 and 30°C for the enzyme from Staphylococcus aureus Copenhagen. Anisotropy measurements of perylene fluorescence and electron spin resonance measurements of N-oxyl-4′,4′-dimethyloxazolidine derivatives of 12-and 16-ketostearic acid intercalated into membranes from this organism define the lower (T1 = 16–22°C) and upper (Th = 30°C) boundaries of a phase transition. These values correlate with the discontinuities observed for the activity measurements. Thus, it is proposed that the physical state of the lipid micro-environment of phospho-MurN Ac-pentapeptide translocase has a significant effect on the catalytic activity of this enzyme.  相似文献   

7.
Growing protoplasts of Streptococcus faecalis 9790 were found to synthesize and excrete soluble peptidoglycan fragments. The presence of soluble peptidoglycan derivatives in culture supernatants was determined by (i) incorporation of three different radioactively labeled precursors (L-lysine, D-alanine, and acetate) into products which, after hen egg-white lysozyme hydrolysis, had the same KD values on gel filtration as muramidase hydrolysis products of isolated walls; (ii) inhibition of net synthesis of these products by cycloserine and vancomycin; and (iii) identification of disaccharide-peptide monomer using the beta-elimination reaction, gel filtration, and high-voltage paper electrophoresis. Under the conditions of these experiments the presence of newly synthesized, acid-precipitable (macromolecular) peptidoglycan was not detected. The predominance of monomer (70 to 80%) in lysozyme digests of peptidoglycan synthesized by protoplasts was in sharp contrast to digest of walls from intact streptococci which contain mostly peptide cross-linked products. Biosynthesis and release of relatively uncross-linked, soluble peptidoglycan fragments by protoplasts was related to the absence of suitable, preexisting acceptor wall.  相似文献   

8.
During the cource of the investigation of ribotidation of purine and pyrimidine bases by Brevibacterium ammoniagenes ATCC 6872, it was found that a large amount of uridine 5′-monophosphate (UMP) was accumulated in the culture broth when the organism was incubated in a medium containing uracil or orotic acid. The yields of UMP were 83% (4.8 mg/ml) from uracil and 100% (4.3 mg/ml) from orotic acid when each substrate was added at the concentration of 2 mg/ml.

Addition of 6-azauracil or 5-hydroxyuracil to the culture of the organism during cultivation led to the accumulation of both orotidine 5′-monophosphate (OMP) and UMP. The accumulation of OMP seemed to be due to the inhibition of OMP decarboxylase (E. C. 4.1.1.23) by the ribotide formed from each base. The OMP accumulation was enhanced by the addition of orotic acid in addition to 6-azauracil. When 6-azauracil was added to the medium before inoculation, UMP was predominantly accumulated, and when it was added after one day incubation, OMP was predominantly accumulated. A largest accumulation (3.6 mg/ml) of OMP was obtained when 6-azauracil was added on the 1st day and orotic acid was added on the 3rd day.

UMP and OMP accumulated in the medium were isolated from the cultured broth and identified by usual methods.  相似文献   

9.
Homogenates of Chironomus cells synthesize chitin as effectively as intact cells. Chitin is produced in a dose-dependent manner, when GlcN, GlcNAc, or UDP-GlcNAc is used as precursor. Due to the lability of UDP-GlcNAc incorporation of this substrate is underestimated. No allosteric effect is observed when GlcN or GlcNAc is used as a substrate. Chitin synthesis is stimulated by Mg2+ and inhibited by uridine monophosphate (UMP), uridine diphosphate (UDP), and uridine triphosphate (UTP). The apparent temperature optimum is 30°C, the apparent pH optimum is 5.5–6. Addition of the chitinase inhibitor allosamidin does not enhance chitin synthesis significantly. The time course of chitin formation reveals a lag period of about 12 h, which can be overcome by trypsin treatment. Addition of protease inhibitors prevents chitin synthesis.  相似文献   

10.
The effect of Ca2+ on the adenine nucleotide translocase activity of intact rat liver mitochondria has been studied. The results indicate that in mitochondria which have been allowed to accumulate Ca2+, the activity of the translocase is strongly diminished; half-maximal inhibition is attained when approximately 40 nmol of Ca2+ are accumulated/mg of mitochondrial protein. Inhibition of electron transport or uncoupling prevents the Ca2+-induced inhibition of translocase activity; inhibition of Ca2+ uptake by ruthenium red also prevents the inhibition of the exchange. These experiments indicate that internal, but not external Ca2+ is responsible for the inhibition of adenine nucleotide translocase activity. Inhibition of the exchange activity by Ca2+ occurs even in conditions in which external adenine nucleotide concentrations are rate-limiting.  相似文献   

11.
Most bacteria synthesize muramyl-pentapeptide peptidoglycan precursors ending with a D-alanyl residue (e.g., UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala). However, it was recently demonstrated that other types of precursors, notably D-lactate-ending molecules, could be synthesized by several lactic acid bacteria. This particular feature leads to vancomycin resistance. Vancomycin is a glycopeptide antibiotic that blocks cell wall synthesis by the formation of a complex with the extremity of peptidoglycan precursors. Substitution of the terminal D-alanine by D-lactate reduces the affinity of the antibiotic for its target. Lactobacillus plantarum is a lactic acid bacterium naturally resistant to vancomycin. It converts most of the glycolytic pyruvate to L- and D-lactate by using stereospecific enzymes designated L- and D-lactate dehydrogenases, respectively. In the present study, we show that L. plantarum actually synthesizes D-lactate-ending peptidoglycan precursors. We also report the construction of a strain which is deficient for both D- and L-lactate dehydrogenase activities and which produces only trace amounts of D- and L-lactate. As a consequence, the peptidoglycan synthesis pathway is drastically affected. The wild-type precursor is still present, but a new type of D-alanine-ending precursor is also synthesized in large quantities, which results in a highly enhanced sensitivity to vancomycin.  相似文献   

12.
A microplate, scintillation proximity assay to measure the coupled transglycosylase–transpeptidase activity of the penicillin binding proteins in Escherichia coli membranes was developed. Membranes were incubated with the two peptidoglycan sugar precursors UDP-N-acetyl muramylpentapeptide (UDP-MurNAc(pp)) and UDP-[3H]N-acetylglucosamine in the presence of 40 μM vancomycin to allow in situ accumulation of lipid II. In a second step, vancomycin inhibition was relieved by addition of a tripeptide (Lys-d-ala-d-ala) or UDP-MurNAc(pp), resulting in conversion of lipid II to cross-linked peptidoglycan. Inhibitors of the transglycosylase or transpeptidase were added at step 2. Moenomycin, a transglycosylase inhibitor, had an IC50 of 8 nM. Vancomycin and nisin also inhibited the assay. Surprisingly, the transpeptidase inhibitors penicillin and ampicillin showed no inhibition. In a pathway assay of peptidoglycan synthesis, starting from the UDP linked sugar precursors, inhibition by penicillin was reversed by a ‘neutral’ combination of vancomycin plus tripeptide, suggesting an interaction thus far unreported.  相似文献   

13.
Abstract: We have investigated the mechanism of inhibition of RNA synthesis by methyl mercury (MeHg) in isolated neonatal rat cerebellar cells. Each of the three component steps involved in the incorporation of exogenous [3H]uridine into cellular RNA was examined separately in whole-cell and/or subcellular preparations. Nuclear RNA polymerase activity was measured in preparations containing both free nuclei and whole cells. Incorporation of [3H]UTP into nuclear RNA was found to be unimpaired at concentrations of MeHg that inhibited whole-cell incorporation of [3H]uridine by > 75%. Cellular uptake of [3H]uridine was assayed in cerebellar cells treated with KCN to deplete ATP levels and block subsequent phosphorylation reactions of transported uridine. Uptake activity under these conditions was unaffected by MeHg. Measurement of intracellular phosphorylation of [3H]uridine indicated that inhibition of this activity closely paralleled that of RNA synthesis. Quantitation of individual uridine nucleotides by polyethyleneimine-cellulose TLC revealed reduced levels of UTP and UDP whereas levels of UMP were elevated, suggesting that impairment of phosphorylation was not the result of cellular ATP depletion but, more likely, a direct effect on phosphouridine kinase enzymes. This mechanism of MeHg-induced inhibition of RNA synthesis was confirmed by assays of uridine phosphorylation using cell-free extracts in which exogenous ATP was supplied.  相似文献   

14.
A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4+ could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length.  相似文献   

15.
A whole cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. The concentration of UMP was increased by 23% when 1 g l−1 sodium citrate was fed into the broth. Effects of citrate addition on UMP production were investigated. Glucose-6-phosphate pool was elevated by onefold, while FBP and pyruvate were decreased by 42% and 40%, respectively. Organic acid pools such as acetate and succinate were averagely decreased by 30% and 49%. The results demonstrated that manipulation of citrate levels could be used as a novel tool to regulate the metabolic fluxes distribution among glycolysis, pentose phosphate pathway, and TCA cycle.  相似文献   

16.
Summary Callus cultures derived from roots of summer squash (Cucurbita pepo L. c.v. Early Prolific Straightneck) grown in the dark at 27° C on Murashige and Skoog medium supplemented per liter with 30 g sucrose, 100 mg myo-inositol, 10 mg indole-butyric acid, 2 mg glycine, 1 mg thiamin, 0.5 mg nicotinic acid, 0.5 mg pyridoxine, and 2 g Gelrite were capable of synthesizing pyrimidine nucleotides both de novo and through salvage of existing pyrimidine nucleotides and bases. Evidence that the de novo biosynthesis of pyrimidine nucleotides proceeded via the orotate pathway in this tissue included: (a) demonstration of the incorporation of NaH14CO3 and [14C6]orotic acid into uridine nucleotides (ΣUMP), and (b) demonstration that the addition of 6-azauridine blocked the incorporation of these two precursors into ΣUMP. The synthesis of pyrimidine nucleotides through the salvage of existing pyrimidine bases and ribosides was demonstrated by measuring the incorporation of [14C2]uracil and [14C2]uridine into ΣUMP. Salvage of both [14C2]uracil and [14C2]uridine was sensitive to inhibition by 6-azauridine or one of its metabolites. The orotic acid pathway for the de novo biosynthesis of pyrimidine nucleotides was demonstrated to be sensitive to end-product inhibition. Uridine, or one of its metabolites, inhibited the incorporation of NaH14CO3, but not [14C6]orotic acid, into ΣUMP. Evidence is presented suggesting that Aspartate carbomoyltransferase is the site of feedback control. This work was supported by the Citrus Research Center and Agricultural Experiment Station of the University of California, Riverside, CA. Submitted in partial fulfillment of the requirements of the University of California for the Master of Science degree in botany (F-F.L.)  相似文献   

17.
The specific modulation by three cations, Ca2+, Mg2+, and tetracaine of the equilibrium exchange of SO42− across the erythrocyte membrane was investigated. While external calcium had no effect on SO42− exchange, internal calcium, and external calcium in the presence of 10 μM A23187 were found to be potent inhibitors of the exchange reaction. The apparent inhibition constants (K1) for Ca2+ were calculated to be 6.1 μM and 5 μM for the above two conditions, respectively.Unlike Ca2+, Mg2+ was shown to be a weak activator of SO42− exchange with an apparent dissociation constant of 3.6 μM. Competition experiments demonstrated that the Ca2+ and Mg2+ sites associated with anion transport are distinct and noninteracting.Tetracaine, a cation at neutral pH, was also found to be an inhibitor of SO42− exchange with an apparent K1 of 0.8 mM. Although tetracaine was observed to displace calcium from non-specific sites on the erythrocyte membrane, it showed no effect on the apparent inhibition constant of Ca2+ for SO42− exchange. Thus, the Ca2+ and tetracaine sites also appear to be independent. The difficulty of situating three mutually independent sites on a single subunit protein, i.e., band 3, is considered.Using the experimental data obtained from five individuals, the concentration of free calcium in the red cell cytoplasm was calculated to range from 0.2 to 0.7 μM. This concentration was sufficient to reduce SO42− exchange only 3–8%. It was concluded that calcium inhibition of anion exchange, and, hence, impairment of CO2 transport, may be physiologically significant only in senescent cells and in certain types of anemia where calcium concentrations are significantly increased.  相似文献   

18.
Evidence of the primary sites for the regulation of de novo pyrimidine biosynthesis by purine and pyrimidine nucleosides has been obtained in tissue slices through measurements of the incorporation of radiolabeled precursors into an intermediate and end product of the pathway. Both purine and pyrimidine nucleosides inhibited the incorporation of [14C]-NaHCO3 into orotic acid and uridine nucleotides, and the inhibition was found to be reversible upon transferring the tissue slices to a medium lacking nucleoside. The ammonia-stimulated incorporation of [14C]NaHCO3 into orotic acid, which is unique to liver slices, was sensitive to inhibition by pyrimidine nucleosides at physiological levels of ammonia, but this regulatory mechanism was lost at toxic levels of ammonia. Adenosine, but not uridine, was found to have the additional effects of inhibiting the conversion of [14C]orotic acid to UMP and depleting the tissue slices of PRPP. Since PRPP is required as an activator of the first enzyme of the de novo pathway, CPSase II, and a substrate of the fifth enzyme, OPRTase, these results indicate that adenosine inhibits the incorporation of [14C]NaHCO3 into orotic acid and the incorporation of [14C]orotic acid into UMP by depriving CPSase II and OPRTase, respectively, of PRPP. Uridine or its metabolites, on the other hand, appear to control the de novo biosynthesis of pyrimidines through end product inhibition of an early enzyme, most likely CPSase II. We found no evidence of end product inhibition of the conversion of orotic acid to UMP in tissue slices.  相似文献   

19.
Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.  相似文献   

20.
The in vitro activity of lysostaphin against clinical isolates of Staphylococcus aureus was determined by conventional tube-dilution methods. For comparison, minimal inhibitory concentration (MIC) values were also determined for penicillin G, ampicillin, methicillin, ristocetin, vancomycin, and erythromycin. Phage type and penicillinase and coagulase production were determined for each isolate. The MIC values for lysostaphin ranged from <0.047 to 12.5 μg/ml; 96% of the penicillinase-positive strains were inhibited by 1.56 μg/ml of lysostaphin, whereas 3.12 μg/ml of vancomycin and methicillin were required to attain the same degree of inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号