首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Invasion biologists use two main approaches to evaluate the effects of non‐native species (NNS) on diversity of native species (DNS), namely space‐for‐time and time approaches. These approaches have pitfalls related to lack of controls: the former lacks pre‐invasion data, while the latter often lacks data from non‐invaded sites. 2. We propose a framework that combines space‐for‐time and time approaches and which should result in more focused mechanistic hypotheses and experiments to test the causes of invasibility and the effects of NNS on DNS. We illustrate the usefulness of our framework using two case studies: one with the submersed macrophyte, Hydrilla verticillata, in reservoir and the other with the fish, Geophagus proximus, in a large river–floodplain system. 3. Hydrilla verticillata invaded sites with DNS similar to that found in non‐invaded sites, indicating that biotic and/or abiotic factors did not influence invasion success; however, DNS increased over time in invaded sites compared with non‐invaded sites, suggesting that H. verticillata facilitated natives. In contrast, G. proximus invaded sites with higher DNS than non‐invaded sites, suggesting that biotic and/or abiotic factors favouring natives were important for invasion success, but DNS increased in invaded and non‐invaded sites over time, indicating that an independent factor contributed to DNS increases. 4. Conclusions from both studies would have been inaccurate or incomplete if the space‐for‐time and time approaches had not been used in combination as proposed in our framework.  相似文献   

2.
Diamond (Assembly of species communities. In: Cody ML, Diamond JM, editors. Ecology and evolution of communities. Cambridge: Belknap. p 342–444 ( 1975 )) argued that interspecific competition between species occupying similar niches results in a nonrandom pattern of species distributions. In particular, some species pairs may never be found in the same community due to competitive exclusion. Rigorous analytical methods have been developed to investigate the possible role that interspecific competition has on the evolution of communities. Many studies that have implemented these methods have shown support for Diamond's assembly rules, yet there are numerous exceptions. We build on this previous research by examining the co‐occurrence patterns of primate species in 109 communities from across the world. We used EcoSim to calculate a checkerboard (C) score for each region. The C score provides a measure of the proportion of species pairs that do not co‐occur in a set of communities. High C scores indicate that species are nonrandomly distributed throughout a region, and interspecific competition may be driving patterns of competitive exclusion. We conducted two sets of analyses. One included all primate species per region, and the second analysis assigned each species to one of four dietary guilds: frugivores, folivores, insectivores, and frugivore‐insectivores. Using all species per region, we found significantly high C scores in 9 of 10 regions examined. For frugivores, we found significantly high‐C scores in more than 50% of regions. In contrast, only 23% of regions exhibited significantly high‐C scores for folivores. Our results suggest that communities are nonrandomly structured and may be the result of greater levels of interspecific competition between frugivores compared to folivores. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
  • 1 The patterns of abundance of coccinellid species associated to the main agricultural tree crops of north‐eastern Portugal namely olive, chestnut and almond were studied.
  • 2 During three to four crop seasons, eight olive, five chestnut and one almond groves were sampled. In each grove, five samples were collected from 10 randomly selected trees using the beating technique and the coccinellids were counted and identified to species. Principal component analysis was used to establish associations among crop and coccinellid species.
  • 3 The mean species richness was higher in chestnut, with 15 ± 3.81 species/grove, followed by olive and almond, with 13 ± 2.76 and 10 ± 2.97 species/grove, respectively. Scymnus mediterraneus was the most abundant species in olive and almond, whereas Scymnus interruptus was dominant in chestnut. Brumus quadripustulatus, Chilocorus bipustulatus, Scymnus subvillosus, S. mediterraneus and Rhyzobius chrysomeloides were associated with olive, whereas S. interruptus, Coccinella septempunctata and Adalia decempunctata were associated with chestnut and Hippodamia variegata, Oenopia conglobata and Adalia bipunctata with almond. Both Stethorus punctillum and Scymnus apetzi species were similarly associated with chestnut and almond.
  • 4 The differences in coccinellid communities could have been related to the kind of prey item present in the different trees. This knowledge can be used to develop integrated pest management programmes that encourage greater natural enemy biodiversity in agroecosystems.
  相似文献   

4.
Summary In south‐eastern Australia, the introduced Red Fox (Vulpes vulpes) is a major predator of native wildlife and livestock. Fox control in agricultural landscapes is heavily reliant on the laying of poisoned baits by private landholders, yet there have been few assessments of the application or success of landholder‐baiting practices. We evaluated a community‐based fox‐baiting campaign, typical of programs employed throughout the agricultural regions of south‐eastern Australia to control foxes. We recorded the spatial coverage of 1080 baits deployed by landholders, assessed baiting procedures, monitored the survival of six radio‐collared foxes during and after baiting, and compared the spatial coverage and likely effectiveness of the baiting program with two alternative (theoretical) baiting strategies. Relative to other baiting programs, coordination among neighbours was reasonably high, with 37.5% of baited properties (n = 40) adjoining ≥3 neighbouring properties that also contained baits. Nevertheless, the maximum distance from the centre of a baited property to the nearest edge of an unbaited property was <750 m (mean = 380 m ± 147 m SD). On average, 33% (±17% SD) of each fox’s home range overlapped with baited properties, but only two foxes died during the baiting program. The remaining four foxes were still alive 10 weeks after baiting ceased. Modelling of simulated fox home ranges showed that 13.5% contained no bait stations based on the community baiting program, whereas alternative roadside‐ and grid‐baiting strategies (theoretically) delivered baits to all simulated home ranges. Some landholders employed practices that could reduce the effectiveness of baiting programs such as not removing decayed baits before deploying new ones or placing bait stations too close together. Our research illustrates the difficulties of managing a coordinated baiting program on private land that effectively controls foxes. Alternative baiting strategies such as roadside baiting need to be considered to improve fox control in agricultural landscapes.  相似文献   

5.
Negative species co‐occurrence patterns have long intrigued ecologists because of their potential link to competition. Although manipulative field experiments have consistently revealed evidence of competition in natural communities, there is little evidence that this competition produces negative co‐occurrence patterns. Evidence does suggest that abiotic variation, dispersal limitation and herbivory can contribute to patterns of negative co‐occurrence among species; it is possible these influences have obscured a link with competition. Here, we test for a connection between negative co‐occurrence and competition by examining a small‐scale, relatively homogeneous old‐field plant community where the influence of abiotic variation was likely to be minimal and we accounted for the impact of herbivory with an herbivore exclosure treatment. Using three years of data (two biennial periods), we tested whether negatively co‐occurring pairs of species, when occasionally found together, experienced asymmetric abundance decline more frequently than positively co‐occurring pairs, for which there is no such expectation. We found no evidence that negatively co‐occurring pairs consistently suffered asymmetric abundance decline more frequently than positively co‐occurring pairs, providing no evidence that competition is a primary driver of negative co‐occurrence patterns in this community. Our results were consistent across control and herbivore exclosure treatments, suggesting that herbivores are not driving patterns of negative species co‐occurrence in this community. Any influence of competition or herbivory on co‐occurrence patterns is small enough that it is obscured by other factors such as substrate heterogeneity, dispersal and differential species responses to climatic variation through time. We interpret our results as providing evidence that competition is not responsible for producing negative co‐occurrence patterns in our study community and suggest that this may be the case more broadly.  相似文献   

6.
7.
Abstract The effects of recent fire frequency and time‐since‐fire on plant community composition and species abundance in open‐forest and woodland vegetation in Girraween National Park, south‐east Queensland, Australia, were examined. Cover‐abundance data were collected for shrub and vine species in at least 10 400‐m2 plots in each of four study areas. Study areas were within one community type and had burnt most recently either 4 or 9 years previously. Variations in fire frequency allowed us to compare areas that had burnt at least three times in the previous 25 years with less frequently burnt areas, and also woodlands that had experienced a 28‐year interfire interval with more frequently burnt areas. Although species richness did not differ significantly with either time‐since‐fire or fire frequency, both these factors affected community composition, fire frequency being the more powerful. Moisture availability also influenced floristics. Of the 67 species found in five or more plots, six were significantly associated with time‐since‐fire, whereas 11 showed a significant difference between more and less frequently burnt plots in each of the two fire‐frequency variables. Most species, however, did not vary in cover‐abundance with the fire regime parameters examined. Even those species that showed a marked drop in cover‐abundance when exposed to a particular fire regime generally maintained some presence in the community. Five species with the capacity to resprout after fire were considered potentially at risk of local extinction under regimes of frequent fire, whereas two species were relatively uncommon in long‐unburnt areas. Variable fire regimes, which include interfire intervals of at least 15 years, could be necessary for the continuity of all species in the community.  相似文献   

8.
The underlying drivers of β‐diversity along latitudinal gradients have been unclear. Previous studies have focused on β‐diversities calculated at a local scale and shed limited light on regional β‐diversity. We tested the much‐debated effects of range size vs. environmental filtering on the β‐gradient using data from the US Forest Inventory Analysis Program. We showed that the drivers of the β‐gradient were scale dependent. At the local scale species spatial patterns contributed little to the β‐gradient, whereas at the regional scale spatial patterns dominated the gradient and a U‐shape latitudinal relationship for the standardised β‐diversity deviation was revealed. The relationship can be explained by spatial variation in climate and soil texture, thus supporting the environmental filtering hypothesis. But it is inconsistent with Rapoport's rule about the effect of range size on β‐gradient. These results resolve the debate on whether species spatial distributions contribute to β‐gradient and attest the importance of environmental filtering in determining regional β‐diversity.  相似文献   

9.
10.
Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β‐diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N‐related niche by quantifying net fluxes of , and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance–decay curve) on species assemblages. Species turnover was significant (β1/2 = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m2/s for Tomentella species. The lowest uptake rates of were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m2/s), followed by Cortinarius species (60 nmol/m2/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m2/s). These results suggest uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology.  相似文献   

11.
12.
Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species’ response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower‐mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present‐day gauging data. Species’ abundances were predicted for three periods: (1) baseline (1998–2017), (2) horizon 2050 (2046–2065) and (3) horizon 2090 (2080–2099) based on these empirical relationships and using high‐resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low‐flow conditions, leading to decreased abundances of species up to ?42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower‐mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate‐change impacts on species abundances and can be applied to any stressor, species, or region.  相似文献   

13.
14.
15.
Biodiversity is comprised of genetic and phenotypic variation among individual organisms, which might belong to the same species or to different species. Spatial patterns of biodiversity are of central interest in ecology and evolution for several reasons: to identify general patterns in nature (e.g. species–area relationships, latitudinal gradients), to inform conservation priorities (e.g. identifying hotspots, prioritizing management efforts) and to draw inferences about processes, historical or otherwise (e.g. adaptation, the centre of origin of particular clades). There are long traditions in ecology and evolutionary biology of examining spatial patterns of biodiversity among species (i.e. in multispecies communities) and within species, respectively, and there has been a recent surge of interest in studying these two types of pattern simultaneously. The idea is that examining both levels of diversity can materially advance the above‐stated goals and perhaps lead to entirely novel lines of inquiry. Here, we review two broad categories of approach to merging studies of inter‐ and intraspecific variation: (i) the study of phenotypic trait variation along environmental gradients and (ii) the study of relationships between patterns of molecular genetic variation within species and patterns of distribution and diversity across species. For the latter, we report a new meta‐analysis in which we find that correlations between species diversity and genetic diversity are generally positive and significantly stronger in studies with discrete sampling units (e.g. islands, lakes, forest fragments) than in studies with nondiscrete sampling units (e.g. equal‐area study plots). For each topic, we summarize the current state of knowledge and key future directions.  相似文献   

16.
Shifts in precipitation regimes are an inherent component of climate change, but in low‐energy systems are often assumed to be less important than changes in temperature. Because soil moisture is the hydrological variable most proximally linked to plant performance during the growing season in arctic‐alpine habitats, it may offer the most useful perspective on the influence of changes in precipitation on vegetation. Here we quantify the influence of soil moisture for multiple vegetation properties at fine spatial scales, to determine the potential importance of soil moisture under changing climatic conditions. A fine‐scale data set, comprising vascular species cover and field‐quantified ecologically relevant environmental parameters, was analysed to determine the influence of soil moisture relative to other key abiotic predictors. Soil moisture was strongly related to community composition, species richness and the occurrence patterns of individual species, having a similar or greater influence than soil temperature, pH and solar radiation. Soil moisture varied considerably over short distances, and this fine‐scale heterogeneity may contribute to offsetting the ecological impacts of changes in precipitation for species not limited to extreme soil moisture conditions. In conclusion, soil moisture is a key driver of vegetation properties, both at the species and community level, even in this low‐energy system. Soil moisture conditions represent an important mechanism through which changing climatic conditions impact vegetation, and advancing our predictive capability will therefore require a better understanding of how soil moisture mediates the effects of climate change on biota.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号