首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observed phenological changes can be explained either by individual phenotypic plasticity or by evolutionary changes, but there is more evidence pointing towards phenotypic plasticity to explain the mechanism behind changes in bird phenology. However, most studies on phenology have been conducted on insectivorous bird species for which breeding is closely tied to temperature and insect emergence. In this study, we examined the consequences of climatic conditions on the nesting phenology of temperate breeding Canada Geese Branta canadensis maxima, which rely on a continuous food supply, during a 14‐year period (2003–16). We determined whether laying dates were plastically adjusted to spring environmental conditions, and whether this adjustment resulted in a laying date advancement. We further estimated the strength and shape of selection acting on breeding timing, by looking at the effect of laying date on the relative number of young successfully hatched in a nest. We found that Geese plastically adjusted their laying date to spring maximum temperature (and not to precipitation or ice break‐up), resulting in a 9‐day advancement of laying date in the population for that period. Laying date was also moderately repeatable (r = 0.23) and subject to directional selection, but stabilizing selection was negligible. We thus demonstrate how Canada Geese plastically adjust laying dates to temperature, which may further be beneficial to nesting success. Evolutionary change of laying date to selection related to climate change, however, is still possible.  相似文献   

2.
The phenological responses to climate of residents and migrants (short- and long-distance) differ. Although few previous studies have focussed on this topic, the agree that changes in phenology are more apparent for residents than for long-distance migrants. We analysed the breeding times of two selected residents (Sitta europaea, Parus major) and one long-distance migrant (Ficedula albicollis) from 1961 to 2007 in central Europe. The timing of the phenophases of all three bird species showed a significant advance to earlier times. Nevertheless, the most marked shift was observed for the long-distance migrant (1.9 days per decade on average in mean laying date with linearity at the 99.9 % confidence level). In contrast, the shifts shown by the residents were smaller (1.6 days for S. europaea and 1.5 days for P. major also on average in mean laying date for both, with linearity at the 95 % confidence level). Spearman rank correlation coefficients calculated for pairs of phenophases of given bird species in 20-year subsamples (e.g. 1961–1980, 1962–1981) showed higher phenological separation between the residents and the migrant. This separation is most apparent after the 1980s. Thus, our results indicate that the interconnections between the studied phenological stages of the three bird species are becoming weaker.  相似文献   

3.
Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra‐African migrants. Because climate change patterns are not uniform across the globe, we can expect regional disparities in bird phenological responses. It is also likely that they vary across species, as species show differences in the strength of affinities they have with particular habitats and environments. Here, we examine the arrival and departure of nine Palearctic and seven intra‐African migratory species in the central Highveld of South Africa, where the former spend their nonbreeding season and the latter their breeding season. Using novel analytical methods based on bird atlas data, we show phenological shifts in migration of five species – red‐backed shrike, spotted flycatcher, common sandpiper, white‐winged tern (Palearctic migrants), and diederik cuckoo (intra‐African migrant) – between two atlas periods: 1987–1991 and 2007–2012. During this time period, Palearctic migrants advanced their departure from their South African nonbreeding grounds. This trend was mainly driven by waterbirds. No consistent changes were observed for intra‐African migrants. Our results suggest that the most consistent drivers of migration phenological shifts act in the northern hemisphere, probably at the breeding grounds.  相似文献   

4.
Variation in climatic conditions is an important driving force of ecological processes. Populations are under selection to respond to climatic changes with respect to phenology of the annual cycle (e.g. breeding, migration) and life‐history. As teleconnections can reflect climate on a global scale, the responses of terrestrial animals are often investigated in relation to the El Niño‐Southern Oscillation and North Atlantic Oscillation. However, investigation of other teleconnections and local climate is often neglected. In this study, we examined over a 33‐year period the relationships between four teleconnections (El Niño‐Southern Oscillation, North Atlantic Oscillation, Arctic Oscillation, East Atlantic Pattern), local weather parameters (temperature and precipitation) and reproduction in great tits Parus major and blue tits Cyanistes caeruleus in the Carpathian Basin, Hungary. Furthermore, we explored how annual variations in the timing of food availability were correlated with breeding performance. In both species, annual laying date was negatively associated with the Arctic Oscillation. The date of peak abundance of caterpillars was negatively associated with local temperatures in December–January, while laying date was negatively related to January–March temperature. We found that date of peak abundance of caterpillars and laying date of great tits advanced, while in blue tits clutch size decreased over the decades but laying date did not advance. The results suggest that weather conditions during the months that preceded the breeding season, as well as temporally more distant winter conditions, were connected to breeding date. Our results highlight that phenological synchronization to food availability was different between the two tit species, namely it was disrupted in blue tits only. Additionally, the results suggest that in order to find the climatic drivers of the phenological changes of organisms, we should analyze a broader range of global meteorological parameters.  相似文献   

5.
Climate change has advanced the breeding dates of many bird species, but for few species we know whether this advancement is sufficient to track the advancement of the underlying levels of the food chain. For the long-distance migratory pied flycatcher Ficedula hypoleuca the advancement in breeding time has been insufficient to maintain the synchrony with their main food sources. The timing of arrival in the breeding areas from their African wintering grounds is likely to constrain the advancement of breeding date. We hypothesise that this is because in Africa they cannot predict the advancement of spring in their breeding habitat. However, long-distance migrants may advance their arrival time by migrating faster when circumstances en route are favourable. In this study we show that both arrival and breeding date depend on temperatures at their main North African staging grounds, as well as on temperature at the breeding grounds. Male arrival and average laying date were not correlated, but the positive effect of temperature in North Africa on breeding dates suggests that breeding date is indeed constrained by arrival of females. Long-distance migrants thus are able to adjust arrival and hence breeding by faster spring migration, but the degree of adjustment is probably limited as timing schedules in spring are tight. Furthermore, as climate change is affecting temperatures differently along the migratory flyway and the breeding areas, it is unlikely that arrival dates are advanced at the same rate as the timing of breeding should advance, given the advancement of the underlying levels of the food chain.  相似文献   

6.
Many organisms adjust their reproductive phenology in response to climate change, but phenological sensitivity to temperature may vary between species. For example, resident and migratory birds have vastly different annual cycles, which can cause differential temperature sensitivity at the breeding grounds, and may affect competitive dynamics. Currently, however, adjustment to climate change in resident and migratory birds have been studied separately or at relatively small geographical scales with varying time series durations and methodologies. Here, we studied differential effects of temperature on resident and migratory birds using the mean egg laying initiation dates from 10 European nest box schemes between 1991 and 2015 that had data on at least one resident tit species and at least one migratory flycatcher species. We found that both tits and flycatchers advanced laying in response to spring warming, but resident tit populations advanced more strongly in relation to temperature increases than migratory flycatchers. These different temperature responses have already led to a divergence in laying dates between tits and flycatchers of on average 0.94 days per decade over the current study period. Interestingly, this divergence was stronger at lower latitudes where the interval between tit and flycatcher phenology is smaller and winter conditions can be considered more favorable for resident birds. This could indicate that phenological adjustment to climate change by flycatchers is increasingly hampered by competition with resident species. Indeed, we found that tit laying date had an additional effect on flycatcher laying date after controlling for temperature, and this effect was strongest in areas with the shortest interval between both species groups. Combined, our results suggest that the differential effect of climate change on species groups with overlapping breeding ecology affects the phenological interval between them, potentially affecting interspecific interactions.  相似文献   

7.
Phenological advancement allows individuals to adapt to climate change by timing life‐history events to the availability of key resources so that individual fitness is maximized. However, different trophic levels may respond to changes in their environment at different rates, potentially leading to a phenological mismatch. This may be especially apparent in the highly seasonal arctic environment that is experiencing the effects of climate change more so than any other region. During a 14‐year study near Utqia?vik (formerly Barrow), Alaska, we estimated phenological advancement in egg laying in relation to snowmelt for eight arctic‐breeding shorebirds and investigated potential linkages to species‐specific life‐history characteristics. We found that snowmelt advanced 0.8 days/year—six times faster than the prior 60‐year period. During this same time, six of the eight species exhibited phenological advancement in laying dates (varying among species from 0.1 to 0.9 days earlier per year), although no species appeared capable of keeping pace with advancing snowmelt. Phenological changes were likely the result of high phenotypic plasticity, as all species investigated in this study showed high interannual variability in lay dates. Commonality among species with similar response rates to timing of snowmelt suggests that nesting later and having an opportunistic settlement strategy may increase the adaptability of some species to changing climate conditions. Other life‐history characteristics, such as migration strategy, previous site experience, and mate fidelity did not influence the ability of individuals to advance laying dates. As a failure to advance egg laying is likely to result in greater phenological mismatch, our study provides an initial assessment of the relative risk of species to long‐term climatic changes.  相似文献   

8.
Evidences for phenological changes in response to climate change are now numerous. One of the most documented changes has been the advance of spring arrival dates in migratory birds. However, the effects of climate change on subsequent events of the annual cycle remain poorly studied and understood. Moreover, the rare studies on autumn migration have mainly concerned passerines. Here, we investigated whether raptor species have changed their autumn migratory phenology during the past 30 years at one of the most important convergent points of western European migration routes in France, the Organbidexka pass, in the Western Pyrenees. Eight out of the 14 studied raptor species showed significant phenological shifts during 1981–2008. Long-distance migrants displayed stronger phenological responses than short-distance migrants, and advanced their mean passage dates significantly. As only some short-distance migrants were found to delay their autumn migration and as their trends in breeding and migrating numbers were not significantly negative, we were not able to show any possible settling process of raptor populations. Negative trends in numbers of migrating raptors were found to be related to weaker phenological responses. Further studies using data from other migration sites are necessary to investigate eventual changes in migration routes and possible settling process.  相似文献   

9.
Current climate change has been found to advance spring arrival and breeding dates of birds, but the effects on autumn migration and possible responses in the distribution of wintering individuals are poorly known. To thoroughly understand the consequences of climate change for animal life histories and populations, exploration of whole annual cycles are needed. We studied timing of migration (years 1979–2007), breeding phenology (1979–2007) and breeding success (1973–2007) of Eurasian sparrowhawks Accipiter nisus in Finland. We also investigated whether the migration distance of Finnish sparrowhawks has changed since the 1960s, using ringing recovery records. Since the late 1970s Finnish sparrowhawks have advanced their spring arrival, breeding and autumn departure considerably, but the migration distance has not changed. Early migrants, who are the ones with the highest reproductive success, show the strongest advance in the timing of spring migration. In autumn, advanced departure concerns young sparrowhawks. Late autumn migrants, who are mainly adults, have not advanced their migration significantly. The sparrowhawk is the most common bird of prey and the main predator of most passerines in Finland. Therefore, changes in sparrowhawk migration phenology may affect the migration behaviour of many prey species. The breeding success of sparrowhawks has increased significantly over the study period. This is however more likely caused by other factors than climate change, such as reduced exposure to organochlorine pollutants.  相似文献   

10.
Many bird species start laying their eggs earlier in response to increasing spring temperatures, but the causes of variation between and within species have not been fully explained. Moreover, synchronization of the nestling period with the food supply not only depends on first‐egg dates but also on additional reproductive parameters including laying interruptions, incubation time and nestling growth rate. We studied the breeding cycle of two sympatric and closely related species, the blue tit Cyanistes caeruleus and the great tit Parus major in a rich oak‐beech forest, and found that both advanced their mean first‐egg dates by 11–12 days over the last three decades. In addition, the time from first egg to fledging has shortened by 2–3 days, through a decrease in laying interruptions, incubation time (not statistically significant) and nestling development time. This decrease is correlated with a gradual increase of temperatures during laying, suggesting a major effect of the reduction in laying interruptions. In both species, the occurrence of second clutches has strongly decreased over time. As a consequence, the average time of fledging (all broods combined) has advanced by 15.4 and 18.6 days for blue and great tits, respectively, and variance in fledging dates has decreased by 70–75%. Indirect estimates of the food peak suggest that both species have maintained synchronization with the food supply. We found consistent selection for large clutch size, early laying and short nest time (laying to fledging), but no consistent changes in selection over time. Analyses of within‐individual variation show that most of the change can be explained by individual plasticity in laying date, fledging date and nest time. This study highlights the importance of studying all components of the reproductive cycle, including second clutches, in order to assess how natural populations respond to climate change.  相似文献   

11.
A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such “trophic asynchrony” is hypothesized to have contributed to recent population declines of long‐distance migratory birds in particular. Using spatially extensive survey data from 1983 to 2010 to estimate variation in spring phenology from 280 plant and insect species and the egg‐laying phenology of 21 British songbird species, we explored the effects of trophic asynchrony on avian population trends and potential underlying demographic mechanisms. Species which advanced their laying dates least over the last three decades, and were therefore at greatest risk of asynchrony, exhibited the most negative population trends. We expressed asynchrony as the annual variation in bird phenology relative to spring phenology, and related asynchrony to annual avian productivity. In warmer springs, birds were more asynchronous, but productivity was only marginally reduced; long‐distance migrants, short‐distance migrants and resident bird species all exhibited effects of similar magnitude. Long‐term population, but not productivity, declines were greatest among those species whose annual productivity was most greatly reduced by asynchrony. This suggests that population change is not mechanistically driven by the negative effects of asynchrony on productivity. The apparent effects of asynchrony on population trends are therefore either more likely to be strongly expressed via other demographic pathways, or alternatively, are a surrogate for species' sensitivity to other environmental pressures which are the ultimate cause of decline.  相似文献   

12.
Many birds have advanced their spring migration and breeding phenology in response to climate change, yet some long‐distance migrants appear constrained in their adjustments. In addition, bird species with long generation times and those in higher trophic positions may also be less able to track climate‐induced shifts in food availability. Migratory birds of prey may therefore be particularly vulnerable to climate change because: 1) most are long‐lived and have relatively low reproductive capacity, 2) many feed predominately on insectivorous passerines, and 3) several undertake annual migrations totaling tens of thousands of kilometers. Using multi‐decadal datasets for 14 raptor species observed at six sites across the Great Lakes region of North America, we detected phenological shifts in spring migration consistent with decadal climatic oscillations and global climate change. While the North Atlantic and El Niño Southern Oscillations exerted heterogeneous effects on the phenology of a few species, arrival dates more generally advanced by 1.18 d per decade, a pattern consistent with the effects of global climate change. After accounting for heterogeneity across observation sites, five of the 10 most abundant species advanced the bulk of their spring migration phenology. Contrary to expectations, we found that long‐distance migrants and birds with longer generation times tended to make the greatest advancements to their spring migration. Such results may indicate that phenotypic plasticity can facilitate climatic responses among these long‐lived predators.  相似文献   

13.
Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade?1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.  相似文献   

14.
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt‐out date), the timing of plant phenology and egg‐laying date of the coal tit (Periparus ater). We collected 9 years (2011–2019) of data on egg‐laying date, spring air temperature, snow melt‐out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont‐Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg‐laying date, while at high‐altitude snow melt‐out date was the limiting factor. At both elevations, air temperature had a similar effect on egg‐laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.  相似文献   

15.
David Jenkins 《Bird Study》2013,60(4):407-414
Capsule Marked changes were observed in the spring phenology of birds and were more apparent in residents and short‐distance migrants than in trans‐Mediterranean migrants.

Aims To examine changes in first songs and arrivals of birds in northeast Scotland.

Methods First song or first observations of 38 species were recorded between 1974 and 2010. Trends through time, and relationships with regional variation in temperature, were both examined.

Results There was a strong tendency for first song/first arrival dates to advance, with the average change being an advance of 25 days over the 37 years of study (or 0.7 days per year). Change was greater in the dates of first song of resident species than in the first detection of short‐distance and trans‐Mediterranean migrants. Relationships with temperature were apparent, but were significant for fewer than half of the species.

Conclusion Bird species vary greatly in their phenological response to climate warming. The recent decade of sustained higher spring temperatures has enabled greater detection of change in long‐term time series, and milder winters (except 2009/10) have also increased the incidence of wintering in short‐distance migrants.  相似文献   

16.
Predicting how animal populations respond to climate change requires knowledge of how species traits influence the response of individuals to variation in anuual weather. Over a four‐year study with two warm and two cold years, we examined how sympatric rock ptarmigan Lagopus muta and white‐tailed ptarmigan L. leucura in the southern Yukon Territory respond to spring weather in terms of breeding phenology and the allocation of reproductive effort. The onset of breeding was approximately synchronous; for each one‐degree rise in spring temperature, mean breeding dates of rock and white‐tailed ptarmigan advanced by about 2.7 and 4 days respectively. Although onset of breeding was similar, the two species differed in their reproductive effort. As breeding was delayed, average first clutch sizes of rock ptarmigan declined from 9.4 to 5.8 eggs over the breeding period, while those of white‐tailed ptarmigan only declined from an average of 7.8 to 6.8. Rock ptarmigan were also less likely to re‐nest if their first clutch was lost to predators and as a consequence they had shorter breeding seasons. White‐tailed ptarmigan produced about 25% more offspring annually than rock ptarmigan and contributed more young through re‐nesting. While white‐tailed ptarmigan had higher annual reproductive output, adult rock ptarmigan had a 20–25% higher annual survival rate, which may indicate a reproduction–survival trade‐off for the two species. These results show that even within the same location, closely related species can differ in how they allocate effort as environmental conditions fluctuate.  相似文献   

17.
Although temperature‐correlated shifts in the timing of egg‐laying have been documented in numerous bird species, the vast majority of species examined to date have been those that breed in Europe and have an animal‐based diet during breeding. However, given that the timing of breeding can be driven, either in the proximate or in the ultimate sense, by seasonal fluctuations in food availability, the relationship between temperature and laying may differ with diet. Here, we report on patterns of reproductive timing in House Finches Haemorhous mexicanus, a North American species that breeds on a primarily seed‐based diet. Analysing nest records from House Finches in California spanning more than a century, we found that egg‐laying occurred significantly earlier in warmer springs. We also found that although the timing of egg‐laying does not show long‐term changes in most of California, in the hottest region of the state (the southeast desert basin) it has advanced significantly.  相似文献   

18.
Warmer springs may cause animals to become mistimed if advances of spring timing, including available resources and of timing of breeding occur at different speed. We used thermal sums (cumulative sum of degree days) during spring to describe the thermal progression (timing) of spring and investigate its relationship to breeding phenology and demography of a long‐distant migrant bird, the northern wheatear (Oenanthe oenanthe L.). We first compare 20‐year trends in spring timing, breeding time, selection for breeding time, and annual demographic rates. We then explicitly test whether annual variation in selection for breeding time and demographic rates associates with the degree of phenological matching between breeding time and thermal progression of spring. Both thermal progression of spring and breeding time of wheatears advanced in time during the study period. But despite breeding on average 7 days earlier with respect to date, wheatears bred about 4 days later with respect to thermal spring progression. Over the same time period, selection for breeding time changed from distinct within‐season advantage of breeding early to no or very weak advantage. Furthermore, demographic rates (nest success, fledgling production, recruitment, adult survival) and nestling weight declined markedly by 16%–79%. Those temporal trends suggest that a reduced degree of phenological matching may affect within‐season fitness advantage of early breeding and population demographic rates. In contrast, when we investigate links based on annual variation, we find no significant relationship between either demographic rates or fitness advantage of early breeding with annual variation in the degree of phenological matching. Our results show that corresponding temporal trends in phenological matching, selection for breeding time and demographic rates are inconclusive evidence for demographic effects of changed phenological matching. Instead, we suggest that the trends in selection for breeding time and demographic rates are due to a general deterioration of the breeding environment.  相似文献   

19.
One of the most consensual ecological effects of the current climate warming is the alteration of the environmental timing of ecosystems. Phenological shifts, at different levels of food webs, are predicted to have major effects on species assemblages. Indeed it is unlikely that all species should be able to respond to the phenological shifts of their environment evenly. Yet questions remain about the specific traits that predict the ability of a species to track the temporal fluctuations of its environment. In this study, we use data from the French Constant Effort Site ringing program over a 20 years period (1989–2008) to estimate the ability of 20 common passerine species to adjust their breeding phenology to spring temperature variations. We show that the sensitivity of species breeding phenology to climate relates to species mean migration distance, species’ thermal and habitat niche breadth and brain mass. Species with the broadest ecological and thermal niches, the shortest mean migration distances and the largest brains were most able to adjust their breeding phenology to temperature variations. Our results thus identify long distance migrants and ecological specialists as species that could most suffer from the future expected climate change and suggests phenological adjustment as one possible mechanism underlying the replacement of specialist species by more generalist ones, the so called functional biotic homogenization.  相似文献   

20.
The timing of annual events such as reproduction is a critical component of how free‐living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface‐feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface‐feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species’ foraging behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号