首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigated whether the winter diet of a typical seed‐eating bird is hard‐wired in the context of evolutionary hypothesis for granivory. We examined the diet composition of ‘a small‐billed form’ of the reed bunting Emberiza schoeniclus wintering in a sewage farm in south‐western Poland (Central Europe), where unfrozen wastewater provides various groups of invertebrate prey. The analysis of droppings (N = 151) collected from four different feeding grounds located in reedbeds and grasslands inundated with waste‐water showed the substantial contribution of invertebrates in the diet of reed buntings. Across four sample areas, the frequency of invertebrates in faecal samples ranged between 37% to 80%. In total, we identified 194 animal prey, mainly spiders Araneae (53% of all identified invertebrate prey), and several taxa of Coleoptera (43%). Among plant food (N = 8357 identified items), the most numerous were shells of weed seeds, namely Amaranthus sp. (56.8%), Urtica dioica (22.6%), and Chenopodium sp. (19.6%). Our results showed that, during winter, the reed bunting is not an obligatory seed‐eater. This species may exploit both animal and plant food; hence, our results indicate that the reed buntings wintering in temperate Europe may feed more opportunistically than was previously assumed. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 429–433.  相似文献   

2.
We investigated the effects of resource distribution on the population structure and distribution of a polytypic bird species. We compared the presence of insect remains (mainly dormant larvae) in the winter diet of two reed bunting subspecies, small billed E. s. schoeniclus and large billed E. s. intermedia and studied the distribution of this resource within reed ( Phragmites sp.) stems in seven north Italian localities where the two subspecies breed (three schoeniclus and four intermedia populations). We also tested if the distributions of winter insect resources and breeding populations of the large bill subspecies overlapped. The distribution of the larvae in reed stems matched closely the distribution of large billed breeding populations. The winter diets of the two subspecies were significantly different in terms of frequency of insect remains. These results, when compared to theoretical models of para-patric distribution, suggest that the two subspecies may be subject to ecological (vicariant) selection maintaining their reproductive isolation. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 21–26.  相似文献   

3.
Male and female sooty oystercatchers (subspecies Haematopus fuliginosus fuliginosus; Haematopodidae) have an average difference in bill length of 19%. We studied the relationship between this sexual dimorphism and foraging ecology at coastal sites in southern New South Wales, Australia. Intersexual foraging divergence was most striking in diet, with seven prey classes eaten exclusively by one sex (male: 4, female: 3), and all shared prey classes eaten in different proportions. Intersexual diet partitioning was also observed in energetic rewards gained from foraging, with females gaining highest energetic benefits from eating ascidians and males from eating limpets. Furthermore, within the most commonly consumed prey item, limpets, females gained higher energetic benefit from eating smaller sizes while males gained greater rewards from the largest limpet sizes. Intersexual divergence was also observed in several aspects of foraging behaviour. Finally, there was a significant effect of tidal cycles upon intersexual niche partitioning in this species; the degree of diet divergence varied between tide conditions and females had a consistently more efficient dietary intake on neap tides than males. Diet divergence in the sooty oystercatcher is greater than previously observed in any oystercatcher, and is correlated with the largest sexual bill dimorphism recorded in this family. It is argued that intersexual competition between territorial pairs is operating to diverge male and female bill morphology.  相似文献   

4.
In passerine birds morphological differentiation in bill size within species is not commonly observed. Bill size is usually associated with a trophic niche, and strong differences in it may reflect the process of genetic differentiation and, possibly, speciation. We used both mitochondrial DNA (mtDNA) and nuclear microsatellites to study genetic variation between two subspecies of reed bunting, Emberiza schoeniclus schoeniclus and E.s. intermedia , along their distributional boundary in western Europe. These two subspecies are characterized by a high dimorphism in bill size and, although breeding populations of the two subspecies are found very close to each other in northern Italy, apparently no interbreeding occurs. The observed morphological pattern between the two subspecies may be maintained by geographically varying selective forces or, alternatively, may be the result of a long geographical separation followed by a secondary contact. MtDNA sequences of cytochrome b and ND5 (515 bp) showed little variation and did not discriminate between the two subspecies, indicating a divergence time of less than 500 000 years. The analysis of four microsatellite loci suggested a clear, although weak, degree of genetic differentiation in the large- and small-billed populations, as indicated by F ST and R ST values and genetic distances. The correlation between bill size and genetic distance between populations remained significant after accounting for the geographical distances between sampling localities. Altogether, these results indicate a very recent genetic differentiation between the two bill morphs and suggest that a strong selection for large bills in the southern part of the breeding range is probably involved in maintaining the geographical differentiation of this species.  相似文献   

5.
Studies of cooperatively breeding birds rarely benefit from the extensive research on adaptive foraging behaviour, despite the potential for concepts such as state‐dependent foraging to explain many aspects of behaviour in social groups. For example, sex differences in preferred foraging techniques used by green woodhoopoes, Phoeniculus purpureus, have previously been explained by sexual dimorphism in bill length and the benefits afforded by foraging specialization and niche differentiation within cooperative groups. Contrary to this argument, there were no sex differences in mean foraging success and/or prey size captured when males and females used the same foraging techniques. Subordinates of both sexes did experience lower and more varied foraging success compared with dominants, but probably only as a consequence of competition or inexperience. However, dominant males experienced greater variance in individual foraging success compared with dominant females, and dominant males also experienced greater variances in prey size when using their preferred foraging techniques. Dominant males therefore appeared to specialize in foraging techniques that provided more variable rewards, whilst dominant females consistently chose to minimize variation in reward. Dominant females also experienced less variance in foraging returns when using the same techniques as males, suggesting a possible link with sexual dimorphism in bill length. Partitioning of foraging niches in dominant green woodhoopoes therefore appears to be better explained by sex differences in variance (risk) sensitivity to foraging rewards. We suggest that this kind of detailed analysis of state‐dependent foraging has the potential to explain many of the crucial age and sex differences in behaviour within cooperative groups.  相似文献   

6.
ABSTRACT

Capsule: Black-tailed Godwits Limosa limosa show sexual size dimorphism and size differences between the subspecies. The shape varies slightly between the subspecies, but not between the sexes.

Aims: To investigate whether and how the three subspecies of Black-tailed Godwits, and the sexes of these subspecies, differ in size and shape.

Methods: We collected body dimensions (lengths of the bill, total head, tarsus, tarsus-toe and wing) of adult Black-tailed Godwits from three locations (Iceland, the Netherlands and northwest Australia) corresponding to the breeding or wintering grounds of three known subspecies (islandica, limosa and melanuroides, respectively). Determining sex by molecular assays, we computed degrees of sexual size dimorphism. Using principal component analysis (PCA), we compared differences in size and shape among the different subspecies.

Results: The limosa subspecies was the largest and also showed the most significant sexual size dimorphism. Sexual size dimorphism was smallest for wing length and largest for bill length. The first two axes of the PCA that included all subspecies of both sexes explained 94% of the total variation. Most body dimensions were highly correlated with each other, but wing length varied independently of the other dimensions. Males and females differed only in size (the first axis). However, one of the two small subspecies, islandica, also differed in shape (the second axis) from limosa and melanuroides.

Conclusions: In all three subspecies of Black-tailed Godwits, females are larger than males. The fact that subspecies differed in the degree of size dimorphism and slightly in shape hints at sex-related differences in the ecological selection pressures between the different flyways.  相似文献   

7.
The bill is a sexually dimorphic structure in many bird species and implicated in numerous functions. Sexual differences may arise from sexual selection or ecological divergence. Here, we examined differences in bill size and shape between males and females and explored to what extent these relate to feeding ecology of each sex in Cory's shearwater (Calonectris diomedea). We applied linear measurements and geometric morphometric methods to examine sexual differences in bill size and shape. We investigated feeding ecology by tracking foraging movements during the breeding period and by analysing stable isotope signatures in blood during the breeding period and in feathers grown during the non-breeding period. Bill traits were all sexually dimorphic, both in absolute and relative terms, and scaled hypermetrically with body mass in several characters in males. However, males and females did not differ in their feeding areas or isotopic signatures and no significant correlation was observed between these traits and bill dimorphism. Therefore, we discard the foraging-niche divergence hypothesis, and suggest that sexual dimorphism in bill size in this species is more likely driven by sexual selection related to antagonistic interactions.  相似文献   

8.
Sexual size dimorphism can result in reduced competition if it leads males and females to use different foraging techniques or consume different prey items. Among woodpeckers, differences between males and females in bill length are common and may explain foraging differences in this family of birds. Northern Flickers (Colaptes auratus) are ground‐foraging woodpeckers that specialize on ants. However, the overall contribution of ants to their diet and the proportions of particular ant genera in their diet are not well known. To understand the relationship between bill morphology and the consumption of prey items, we compared the bill length and bill width of male and female flickers. We then collected and analyzed fecal samples from breeding flickers (N = 40 males, 33 females) at a study site in central British Columbia, Canada. Bills of male flickers were significantly longer (4%) and wider (5%) than those of females. Of 11 prey types identified, ants made up over 99% of their diet, and the abundance and composition of ant taxa in the diet did not differ between the sexes. We found significant year and time of season effects, with the abundance of Tapinoma sessile and Lasius spp. increasing from May to the end of June and differing between years. This difference in diet composition between years may have been due to changes in the abundance or accessibility of certain ant taxa related to differences in vegetation structure or weather. Nine ant taxa were consumed by flickers and the four most common were T. sessile, Lasius spp.,Myrmica spp., and the Formica fusca species group. The degree of dimorphism in bill size of male and female Northern Flickers in our study was smaller than reported for several species of arboreal‐foraging woodpeckers, suggesting that bill size of ground‐foraging woodpeckers may not be strongly linked to niche separation at the level of prey selection.  相似文献   

9.
Sex differences in foraging behavior have been widely reported in the ornithological literature, but few examples are available from tropical avifaunas. Differences between males and females in foraging behavior have been hypothesized to be a byproduct of sexual size dimorphism or a result of niche partitioning to reduce intersexual competition for food or different reproductive roles. From 2010 to 2013, I used foraging data and mist‐net capture rates from multiple study sites to examine possible sex differences in the foraging behavior of two New Guinean Pachycephala whistlers. I found that male Regent (Pachycephala schlegelii) and Sclater's (Pachycephala soror) whistlers consistently foraged in higher strata than females. It is unlikely that these differences are due to sexual dimorphism because these species exhibit little sexual dimorphism. Sex differences in foraging behavior were consistent across years and study sites and did not appear linked to breeding behavior, supporting the food‐competition hypothesis, but not the reproductive‐roles hypothesis. Male territorial defense often occurs in relatively high strata in Pachycephala whistlers, possibly influencing male foraging strata. However, male territorial behavior cannot explain why females predominately forage in lower strata. Instead, intersexual competition for food resources is likely the primary driver of differences in the foraging behavior of male and female Regent and Sclater's whistlers.  相似文献   

10.
Hummingbirds are known for their distinctive patterns of sexual dimorphism, with many species exhibiting sex-related differences in various ecologically-relevant traits, including sex-specific differences in bill shape. It is generally assumed that such patterns are consistent across all hummingbird lineages, yet many taxa remain understudied. In this study we examined patterns of sexual size and sexual shape dimorphism in bills of 32 of 35 species in the monophyletic Mellisugini lineage. We also compared patterns of bill size dimorphism in this group to other hummingbird lineages, using data from 219 hummingbird species. Overall, the presence and degree of sexual size dimorphism was similar across all hummingbird lineages, with the majority of Mellisugini species displaying female-biased sexual size dimorphism, patterns that remain unchanged when analyzed in a phylogenetic context. Surprisingly however, we found that sexual dimorphism in bill shape was nearly absent in the Mellisugini clade, with only 3 of the 32 species examined displaying bill shape dimorphism. Based on observations in other hummingbird lineages, the lack of sexual shape dimorphism in Mellisugini is particularly unusual. We hypothesize that the patterns of sexual size dimorphism observed here may be the consequence of differential selective forces that result from competition for ecological resources. We further propose that an influential mechanism underlying shape dimorphism is competition and niche segregation. Taken together, the evolutionary changes in patterns of sexual shape dimorphism observed in Mellisugini suggest that the evolutionary trends of sexual dimorphism in the Trochilidae are far more dynamic than was previously believed.  相似文献   

11.
Relating the effects of foraging niche variation to reproductive dynamics is critical to understand species response to environmental change. We examined foraging niche variations of the slender‐billed gull (Chroicocephalus genei), a nomadic colonial waterbird species during its range expansion along the French Mediterranean coast over a 16‐year period (1998–2013). We investigated whether range expansion was associated with a change in chick diet, breeding success, and chicks body condition. We also examined whether breeding success and chicks body condition were explained by diet and colonial characteristics (number of pairs, laying phenology, habitat, and locality). Diet was characterized using dual‐stable isotopic proxies (δ13C and δ15N) of feather keratin from 331 individuals subsampled from a total of 4,154 chicks ringed and measured at 18 different colonies. δ13C decreased and δ15N increased significantly during range expansion suggesting that chicks were fed from preys of increasing trophic level found in the less salty habitat colonized by the end of the study period. Niche shift occurred without significant change of niche width which did not vary among periods, habitats, or localities either. Breeding success and chick body condition showed no consistent trends over years. Breeding success tended to increase with decreasing δ13C at the colony level while there was no relationship between stable isotope signatures and chick body condition. Overall, our results suggest that even if range expansion is associated with foraging niche shift toward the colonization of less salty and more brackish habitats, the shift had marginal effect on the breeding parameters of the Slender‐billed gull. Niche width appears as an asset of this species, which likely explains its ability to rapidly colonize new locations.  相似文献   

12.
Generalist predator populations are sometimes made up of individuals that specialize on particular prey items. To examine specialization in thick‐billed murres Uria lomvia during self‐feeding we obtained stomach contents and muscle stable isotope values for 213 birds feeding close to five colonies in the Canadian Arctic. Adults were less specialized during self‐feeding than during chick‐provisioning. Nonetheless, particular specialists clustered together within the foraging network. While sexes showed similar levels of specialization, individuals of the same sex clustered together within the foraging network. The significant degree of clustering regardless of sex showed that individuals specializing on one prey item tend to also specialize on another, although network topology varied from colony to colony. Adult muscle stable isotope values correlated with the stable isotope values of the prey found in stomachs, at least at the one colony with relevant prey data, suggesting that specializations are maintained over time. Degree of specialization increased with niche width across the five colonies, but similarity in gastro‐intestinal and bill morphology was independent of dietary similarity. Thus, although individual specialization is thought to play a key role in sympatric speciation through trophic specialization, we found no support for an association between morphology and foraging patterns in our species. We conclude that self‐feeding murres show clustered dietary specialization, and that specialization is highest where diet is most diverse.  相似文献   

13.
Bill size is often viewed as a species‐specific adaptation for feeding, but it sometimes varies between sexes, suggesting that sexual selection or intersexual competition may also be important. Hypotheses to explain sexual dimorphism in avian bill size include divergence in feeding niche or thermoregulatory demands, intrasexual selection based on increased competition among males, or female preference. Birds also show seasonal changes in bill size due to shifts in the balance between growth rate and wear, which may be due to diet or endogenous rhythms in growth. Insight into the function of dimorphism can be gained using the novel approach of digital x‐ray imaging of museum skins to examine the degree to which the skeletal core or the rhamphotheca contribute to overall dimorphism. The rhamphotheca is ever‐growing and ever‐wearing, varying in size throughout life; whereas the skeletal core shows determinant growth. Because tidal marsh sparrows are more dimorphic in bill size than related taxa, we selected two marsh taxa to investigate dimorphism and seasonality in the size of the overall bill, the skeletal core, and the rhamphotheca. Bill size varied by sex and season, with males having larger bills than females, and bill size increasing from nonbreeding to breeding season more in males. Skeletal bill size varied with season, but not sex. The rhamphotheca varied primarily with sex; males had a larger rhamphotheca (corrected for skeletal bill size), which showed a greater seasonal increase than females. The rhamphotheca, rather than the skeletal bill, was responsible for sexual dimorphism in overall bill size, which was particularly well developed in the breeding season. The size of the rhamphotheca may be a condition‐based character that is shaped by sexual selection. These results are consistent with the evidence that bill size is influenced by sexual selection as well as trophic ecology.  相似文献   

14.
Sea‐ice coverage is a key abiotic driver of annual environmental conditions in Arctic marine ecosystems and could be a major factor affecting seabird trophic dynamics. Using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in eggs of thick‐billed murres (Uria lomvia), northern fulmars (Fulmarus glacialis), glaucous gulls (Larus hyperboreus), and black‐legged kittiwakes (Rissa tridactyla), we investigated the trophic ecology of prebreeding seabirds nesting at Prince Leopold Island, Nunavut, and its relationship with sea‐ice conditions. The seabird community of Prince Leopold Island had a broader isotopic niche during lower sea‐ice conditions, thus having a more divergent diet, while the opposite was observed during years with more extensive sea‐ice conditions. Species' trophic position was influenced by sea ice; in years of lower sea‐ice concentration, gulls and kittiwakes foraged at higher trophic levels while the opposite was observed for murres and fulmars. For murres and fulmars over a longer time series, there was no evidence of the effect of sea‐ice concentration on species' isotopic niche. Results suggest a high degree of adaptation in populations of high Arctic species that cope with harsh and unpredictable conditions. Such different responses of the community isotopic niche also show that the effect of variable sea‐ice conditions, despite being subtle at the species level, might have larger implications when considering the trophic ecology of the larger seabird community. Species‐specific responses in foraging patterns, in particular trophic position in relation to sea ice, are critical to understanding effects of ecosystem change predicted for a changing climate.  相似文献   

15.
Many bird species show spatial or habitat segregation of the sexes during the non-breeding season. One potential ecological explanation is that differences in bill morphology favour foraging niche specialisation and segregation. Western sandpipers Calidris mauri have pronounced bill size dimorphism, with female bills averaging 15% longer than those of males. The sexes differ in foraging behaviour and exhibit partial latitudinal segregation during the non-breeding season, with males predominant in the north and females in the south. Niche specialisation at a local scale might account for this broad geographic pattern, and we investigated whether longer-billed females and shorter-billed males occupy different foraging niches at 16 sites across the non-breeding range. We used stable-nitrogen (δ15N) isotope analysis of whole blood to test for dietary specialisation according to bill length and sex. Stable-nitrogen isotope ratios increase with trophic level. We predicted that δ15N values would increase with bill length and would be higher for females, which use a greater proportion of foraging behaviour that targets higher-trophic level prey. We used stable-carbon (δ13C) isotope analysis to test for habitat segregation according to bill length and sex. Stable-carbon isotope ratios vary between marine- and freshwater-influenced habitats. We predicted that δ13C values would differ between males and females if the sexes segregate between habitat types. Using a model selection approach, we found little support for a relationship between δ15N and either bill length or sex. There was some indication, however, that more marine δ13C values occur with shorter bill lengths. Our findings provide little evidence that male and female western sandpipers exhibit dietary specialisation as a function of their bill size, but indicate that the sexes may segregate in different habitats according to bill length at some non-breeding sites. Potential ecological factors underlying habitat segregation between sexes include differences in preferred habitat type and predation risk.  相似文献   

16.
Genetic studies have shown that extra-pair paternity is widespread among socially monogamous bird species. Yet, the role of males and females and their behavior leading to this mixed reproductive strategy is poorly understood. Here, we analyze paternity in relation to male age and mating behavior in the socially monogamous reed bunting (Emberiza schoeniclus). We report a positive relation between male extraterritorial forays and success in obtaining extra-pair fertilizations. Extraterritorial forays tended to increase in frequency with male age and older males sired a larger number of extra-pair offspring than young males. Identified extra-pair sires were old in nine out of ten cases. The likelihood of being cuckolded was not affected by male age. Although based on correlative data, our results highlight age-dependent explorative male behavior as a key determinant for the understanding of extra-pair mating in the reed bunting. We do, however, emphasize the need for further studies to reveal the role of females in extra-pair copulations and fertilizations.  相似文献   

17.
Pteropods are a group of small marine gastropods that are highly sensitive to multiple stressors associated with climate change. Their trophic ecology is not well studied, with most research having focused primarily on the effects of ocean acidification on their fragile, aragonite shells. Stable isotopes analysis coupled with isotope‐based Bayesian niche metrics is useful for characterizing the trophic structure of biological assemblages. These approaches have not been implemented for pteropod assemblages. We used isotope‐based Bayesian niche metrics to investigate the trophic relationships of three co‐occurring pteropod species, with distinct feeding behaviors, sampled from the Southern Kerguelen Plateau area in the Indian Sector of the Southern Ocean—a biologically and economically important but poorly studied region. Two of these species were gymnosomes (shell‐less pteropods), which are traditionally regarded as specialist predators on other pteropods, and the third species was a thecosome (shelled pteropod), which are typically generalist omnivores. For each species, we aimed to understand (a) variability and overlap among isotopic niches; and (b) whether there was a relationship between body size and trophic position. Observed isotopic niche areas were broadest for gymnosomes, especially Clione limacina antarctica, whose observed isotopic niche area was wider than expected on both δ13C and δ15N value axes. We also found that trophic position significantly increased with increasing body length for Spongiobranchaea australis. We found no indication of a dietary shift toward increased trophic position with increasing body size for Clio pyramidata f. sulcata. Trophic positions ranged from 2.8 to 3.5, revealing an assemblage composed of both primary and secondary consumer behaviors. This study provides a comprehensive comparative analysis on trophodynamics in Southern Ocean pteropod species, and supports previous studies using gut content, fatty acid and stable isotope analyses. Combined, our results illustrate differences in intraspecific trophic behavior that may be attributed to differential feeding strategies at species level.  相似文献   

18.
In many hummingbird species there is an opposite pattern of sexual dimorphism in bill length and other morphometric measures of body size. These differences seem to be closely related with differences in foraging ecology directly associated with a different resource exploitation strategy. The aim of this study was to assess if natural selection is acting on wing length and bill size in hummingbird males and females with different resource exploitation strategies (i.e., territorial males and non-territorial females). If competition for resources promotes sexual dimorphism as a selective pressure, males should be subjected to negative directional selection pressure for wing length and no selection pressure over bill size, while females should undergo positive directional selection pressure for both bill size and wing length. The morphometric data we collected suggests that there is no selection for wing length and bill size in male hummingbirds. In contrast, our females exhibited positive directional selection for both wing length and bill size. Although we cannot reject sexual selection acting on sexually dimorphic traits, this study suggests that natural selection may promote sexual dimorphism in traits that are closely related with hummingbird foraging ecology and resource exploitation strategies.  相似文献   

19.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

20.
This study examined sexual dimorphism of head morphology in the ecologically diverse three‐spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size‐adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter‐population differences in head length were correlated between sexes, thus population‐level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter‐population variation and location of sexual dimorphism in G. aculeatus head morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号