共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation was studied in human T lymphocytes stimulated with the mitogenic lectins phytohemagglutinin (PHA) and concanavalin A (Con A). The T lymphocytes were prepared from the venous blood of normal volunteers, their intracellular ATP pools were labeled with [32P]orthophosphate, and protein phosphorylation was assayed in the soluble fraction by two-dimensional gel electrophoresis and autoradiography. When lymphocytes stimulated with PHA or Con A were compared to unstimulated control cells, there was a general increase in protein phosphorylation and the specific phosphorylation of a soluble protein with Mr = 64.9 to 69 KD and pI = 5.6 to 5.8. Phosphorylation of this protein, designated TPP-66, was observed as early as 2 min after the addition of lectin with a gradual increase in the level of phosphorylation over the next 120 min. In the majority of experiments, there was no phosphorylation seen in the unstimulated lymphocytes; however, in some experiments, there was appreciable phosphorylation, which was seen beginning 60 min after the labeling period. When the TPP-66 spot from stimulated lymphocytes was excised from gels, was eluted, and was subjected to limited base hydrolysis followed by single-dimension high voltage electrophoresis, the major phosphorylated residue migrated with phosphotyrosine. In some experiments, there was phosphorylation of serine residues in both the stimulated and control cells; tyrosine phosphorylation was never seen in the unstimulated cell population. These data suggest that, like other stimuli for cell growth, the induction of lymphocyte growth by lectins is associated with the activation of a tyrosine-specific kinase. Thus, tyrosine phosphorylation may play a key role in the transmission of the signal for lymphocyte growth from the exterior to the interior of the cell. 相似文献
2.
The levels of folate derivatives in division synchronized cultures of Euglena gracilis Klebs (strain Z) increased rapidly on a per cell basis durin 相似文献
3.
4.
In peripheral human blood lymphocytes the uptake and metabolism of adenine, guanine, and hypoxanthine was investigated. This was achieved by incubation of purified lymphocytes with 14C-purine bases, separation of cells from the incubation medium by a rapid filtration technique, and subsequent separation of the acid soluble material by thin-layer chromatography. No perferential uptake for one of the purine bases was observed. In all cases only traces of 14C-purine bases not added originally and labeled nucleosides could be demonstrated. Approximately 2/3 of adenine and 1/2 of guanine or hypoxanthine were converted to nucleotides. Separation of formed nucleotides showed that adenine and guanine were metabolized mainly to their corresponding nucleotides; hypoxanthine was converted to a considerable amount to adenine nucleotides and only to a small proportion into its own nucleotides. These results demonstrate the predomonance of adenine nucleotide formation in normal human lymphocytes. 相似文献
5.
The role of monocytes in the induction and regulation of IFN-gamma production by lectin-activated human T lymphocytes. 总被引:2,自引:0,他引:2
J Pryjma M Ernst R Fetting M Woloszyn M Zembala H D Flad 《European cytokine network》1991,2(4):273-279
The data presented show that the production of interferon gamma (IFN-gamma) by pokeweed mitogen (PWM)-activated T lymphocytes requires monocytes and that the amount of lymphokine produced depends on the number of monocytes present in the culture. Accessory function of monocytes was independent from their ability to secrete IL-1 but required cell-cell contact, since blocking of adhesion molecules reduced the IFN-gamma production. Furthermore, production of IFN by lectin-preactivated T lymphocytes could not be triggered by IL-2 but also required monocyte-T cell interaction. 相似文献
6.
Many enzymes in one-carbon metabolism (OCM) are up- or down-regulated by the sex hormones which vary diurnally and throughout the menstrual cycle. During pregnancy, estradiol and progesterone levels increase tremendously to modulate physiological changes in the reproductive system. In this work, we extend and improve an existing mathematical model of hepatic OCM to understand the dynamic metabolic changes that happen during the menstrual cycle and pregnancy due to estradiol variation. In particular, we add the polyamine drain on S-adenosyl methionine and the direct effects of estradiol on the enzymes cystathionine β-synthase (CBS), thymidylate synthase (TS), and dihydrofolate reductase (DHFR). We show that the homocysteine concentration varies inversely with estradiol concentration, discuss the fluctuations in 14 other one-carbon metabolites and velocities throughout the menstrual cycle, and draw comparisons with the literature. We then use the model to study the effects of vitamin B12, vitamin B6, and folate deficiencies and explain why homocysteine is not a good biomarker for vitamin deficiencies. Additionally, we compute homocysteine throughout pregnancy, and compare the results with experimental data. Our mathematical model explains how numerous homeostatic mechanisms in OCM function and provides new insights into how homocysteine and its deleterious effects are influenced by estradiol. The mathematical model can be used by others for further in silico experiments on changes in one-carbon metabolism during the menstrual cycle and pregnancy. 相似文献
7.
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron–sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering. 相似文献
8.
Coppedè F 《Current Genomics》2010,11(4):246-260
Alzheimer's disease (AD) represents the most common form of dementia in the elderly, characterized by progressive loss of memory and cognitive capacity severe enough to interfere with daily functioning and the quality of life. Rare, fully penetrant mutations in three genes (APP, PSEN1 and PSEN2) are responsible for familial forms of the disease. However, more than 90% of AD is sporadic, likely resulting from complex interactions between genetic and environmental factors. Increasing evidence supports a role for epigenetic modifications in AD pathogenesis. Folate metabolism, also known as one-carbon metabolism, is required for the production of S-adenosylmethionine (SAM), which is the major DNA methylating agent. AD individuals are characterized by decreased plasma folate values, as well as increased plasma homocysteine (Hcy) levels, and there is indication of impaired SAM levels in AD brains. Polymorphisms of genes participating in one-carbon metabolism have been associated with AD risk and/or with increased Hcy levels in AD individuals. Studies in rodents suggest that early life exposure to neurotoxicants or dietary restriction of folate and other B vitamins result in epigenetic modifications of AD related genes in the animal brains. Similarly, studies performed on human neuronal cell cultures revealed that folate and other B vitamins deprivation from the media resulted in epigenetic modification of the PSEN1 gene. There is also evidence of epigenetic modifications in the DNA extracted from blood and brains of AD subjects. Here I review one-carbon metabolism in AD, with emphasis on possible epigenetic consequences. 相似文献
9.
One-carbon metabolism is a network of biological reactions that plays critical role in DNA methylation and DNA synthesis, and in turn, facilitates the cross-talk between genetic and epigenetic processes. Genetic polymorphisms and supplies of cofactors (e.g. folate, vitamins B) involved in this pathway have been shown to influence cancer risk and even survival. In this review, we summarized the epidemiological evidence for one-carbon metabolism, from both genetics and lifestyle aspects, in relation to breast cancer risk. We also discussed this pathway in relation to breast cancer survival and the modulation of one-carbon polymorphism in chemotherapy. Emerging evidence on modulation of DNA methylation by one-carbon metabolism suggests that disruption of epigenome might have been the underlying mechanism. More results are expected and will be translated to guidance to the general population for disease prevention as well as to clinicians for treatment and management of the disease. 相似文献
10.
Transport and metabolism of polyamines in human lymphocytes 总被引:1,自引:0,他引:1
S Colombatto L Fasulo B Fulgosi M A Grillo 《The International journal of biochemistry》1990,22(5):489-492
1. Polyamines are taken up by human peripheral lymphocytes in a concentration, time and pH dependent manner, with an energy-dependent transport system. 2. Each polyamine inhibits the uptake of the others, with the exception of putrescine. Spermine appears to have the highest affinity for the transporter/s. 3. Inhibition by ouabain, amiloride and vanadate suggests that the transport is dependent on Na+. 4. Polyamine content inside the cells increases by ca 6 and 3 times respectively during incubation with spermidine or spermine. 5. The incorporated polyamines are partially transformed into each other. 相似文献
11.
12.
The comprehensive studies of purine nucleotide metabolism were done in nonstimulated and phytohemagglutinin (PHA)-stimulated human peripheral blood T lymphocytes. Nonstimulated lymphocytes synthesize nucleotides in two alternative pathways: via biosynthesis de novo and salvage pathways. Although synthesis of triphosphonucleosides in unstimulated lymphocytes was the predominant pathway, interconversion of monophosphonucleosides was also active. Exposure of cells to PHA affects differently various pathways of nucleotide metabolism. The most marked changes observed were rapid activation of purine salvage within minutes after exposure to PHA, and significant increase of 5-phosphoribosyl-1-pyrophosphate levels. In addition, significant increases were found in de novo purine biosynthesis, nucleotide interconversions, and RNA and DNA synthesis, whereas catabolism of nucleotides remained unchanged. These results indicate that PHA activation of T lymphocytes causes a rapid synthesis of nucleotides which may be required immediately for increases in energy metabolism and later as the precursors of nucleic acid synthesis. 相似文献
13.
Lee KM Lan Q Kricker A Purdue MP Grulich AE Vajdic CM Turner J Whitby D Kang D Chanock S Rothman N Armstrong BK 《Human genetics》2007,122(5):525-533
Dysregulation of the one-carbon metabolic pathway, which controls nucleotide synthesis and DNA methylation, may promote lymphomagenesis.
We evaluated the association between polymorphisms in one-carbon metabolism genes and risk of non-Hodgkin lymphoma (NHL) in
a population-based case-control study in Australia. Cases (n = 561) and controls (n = 506) were genotyped for 14 selected single-nucleotide polymorphisms in 10 genes (CBS, FPGS, FTHFD, MTHFR, MTHFS, MTR, SHMT1, SLC19A1, TCN1, and TYMS). We also conducted a meta-analysis of all studies of Caucasian populations investigating the association between MTHFR Ex5+79C > T (a.k.a., 677C>T) and NHL risk. A global test of 13 genotypes was statistically significant for diffuse large B-cell lymphoma (DLBCL; P = 0.008), but not for follicular lymphoma (FL; P = 0.27) or all NHL (P = 0.17). The T allele at MTHFR Ex5+79 was marginally significantly associated with all NHL (OR = 1.25, 95% CI = 0.98–1.59) and DLBCL (1.36, 0.96–1.93). The T allele at TYMS
Ex8+157 was associated with a reduced risk of FL (0.64, 0.46–0.91). An elevated risk of NHL was also observed among carriers of the
G allele at FTHFD
Ex21+31 (all NHL, 1.31, 1.02–1.69; DLBCL, 1.50, 1.05–2.14). A meta-analysis of 11 studies conducted in Caucasian populations of European
origin (4,121 cases and 5,358 controls) supported an association between the MTHFR Ex5+79
T allele and increased NHL risk (additive model, P = 0.01). In conclusion, the results of this study suggest that genetic polymorphisms of one-carbon metabolism genes such as
MTHFR and TYMS may influence susceptibility to NHL.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
14.
15.
16.
NAD metabolism and mitogen stimulation of human lymphocytes 总被引:1,自引:0,他引:1
Gwyn T. Williams Ken M. K. Lau Jacqueline M. Coote Alan P. Johnstone 《Experimental cell research》1985,160(2):419-426
The NAD concentration in eukaryotic cells is an important parameter for many aspects of metabolism including differentiation. As reported by other workers, the NAD content of resting human peripheral blood lymphocytes was low and increased dramatically over a period of 3 days after stimulation with the mitogen phytohemagglutinin (PHA). However, simultaneous measurement of the mean cell volumes showed that the average NAD concentration in fresh quiescent lymphocytes (401 +/- 128 microM) (SD, n = 7) was similar to that observed for other cell types. Furthermore, because of the increase in cell volume which occurred on mitogen stimulation, the NAD concentration in stimulated lymphocytes was only 2-3-fold higher than in fresh resting cells. This increase was also observed in lymphocytes incubated without mitogen and was apparently due to the level of NAD precursors in the culture medium and serum supplement. Hence, the NAD concentration in resting and stimulated lymphocytes is comparable to that of other eukaryotic cells and the variations in NAD content reported earlier have been widely misinterpreted. 相似文献
17.
Purine and pyrimidine metabolism in human T lymphocytes. Regulation of deoxyribonucleotide metabolism 总被引:8,自引:0,他引:8
A Cohen J Barankiewicz H M Lederman E W Gelfand 《The Journal of biological chemistry》1983,258(20):12334-12340
Purine and pyrimidine deoxyribonucleoside metabolism was studied in G1 and S phase human thymocytes and compared with that of the more mature T lymphocytes from peripheral blood. Both thymocyte populations have much higher intracellular deoxyribonucleoside triphosphate (dNTP) pools than peripheral blood T lymphocytes. The smallest dNTP pool in S phase thymocytes is dCTP (5.7 pmol/10(6) cells) and the largest is dTTP (48 pmol/10(6) cells), whereas in G1 thymocytes, dATP and dGTP comprise the smallest pools. While both G1 and S phase thymocytes have active deoxyribonucleoside salvage pathways, only S phase thymocytes have significant ribonucleotide reduction activity. We have studied ribonucleotide reduction and deoxyribonucleoside salvage in S phase thymocytes in the presence of extracellular deoxyribonucleosides. Based on these studies, we propose a model for the interaction of deoxyribonucleoside salvage and ribonucleotide reduction in S phase thymocytes. According to this model, extracellular deoxycytidine at micromolar concentrations is efficiently salvaged by deoxycytidine kinase. However, due to feedback inhibition of deoxycytidine kinase by dCTP, the maximal level of dCTP which can be achieved is limited. The salvage of both deoxyadenosine and deoxyguanosine (up to 10(-4) M) is completely inhibited in the presence of micromolar concentrations of deoxycytidine, whereas the salvage of thymidine is unregulated resulting in large increases in dTTP levels. Moreover, significant amounts of the salvaged deoxycytidine is used for dTTP synthesis resulting in further increase of dTTP pools. The accumulated dTTP inhibits the reduction of UDP and CDP while stimulating GDP reduction and subsequently also ADP reduction. The end result of the proposed model is that S phase thymocytes in the presence of a wide range of extracellular deoxyribonucleoside concentrations synthesize their pyrimidine dNTP by the salvage pathway, whereas purine dNTPs are synthesized primarily by ribonucleotide reduction. Using the proposed model, it is possible to predict the relative intracellular dNTP pools found in fresh S phase thymocytes. 相似文献
18.
A Tabucchi L Terzuoli A Di Stefano M Pizzichini R Leoncini E Dispensa E Marinello 《Bollettino della Società italiana di biologia sperimentale》1990,66(4):349-355
Adenylic acid (AMP) deaminase is a "catabolic enzyme" involved in nucleotide degradation, transforming AMP into inosinic acid (IMP). We present a simple method for the determination of the enzyme activity, which combines high sensitivity with requirement of low quantities of lymphocytes. Human lymphocytes were isolated with a Lymphocyte Separation Medium from FLOW and sonicated. After centrifugation at 2,000 rpm x 10 min and treatment with Norit A, the cells were incubated at 37 degrees C with ATP 0.8 mM and 14C-AMP 0.1 mM (specific activity 12 microCi/mumole) in potassium phosphate 100 mM (pH 7.4). 14C-IMP and 14C-AMP were separated through HPLC by an isocratic elution, with 20 mM KH2PO4 (pH 5.5) at a 1.5 ml/min flow rate. Identification of the nucleotides was carried out through retention time, coelution with internal standards: their evaluation by determining the radioactivity of the collected peaks. The enzyme activity is decreased in patients affected by CLL: the decrease is evident only when data are referred to the single cells and not when they are referred to the protein. 相似文献
19.
M E Boerrigter 《Experimental cell research》1991,196(1):1-5
Recent findings concerning the presumed existence of single-strand breaks (SSB) in quiescent human peripheral blood lymphocytes (PBL) are discussed in relation to the role of poly(ADP-ribosyl)ation in DNA strand break metabolism. It is argued that the activation of poly(ADP-ribose)polymerase (ADPRP) by a DNA-damaging agent is not indicative of an obligatory role of poly(ADP-ribosyl)ation in DNA repair. From this it follows that SSB induced by different strand-breaking agents might be removed by either ADPRP-dependent or ADPRP-independent DNA repair pathways. 相似文献