首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
《Tissue & cell》2016,48(5):516-523
The hypothalamic paraventricular nucleus (PVN) drives the stress response by activating the hypothalamo-pituitary-adrenal (HPA) axis, particularly vulnerable to glucocorticoid exposure during development. To evaluate the effects of fetal dexamethasone (Dx) exposure on the stereological features of PVN and HPA axis activity in female rat fetuses, pregnant rats received 0.5 mg Dx/kg/b.w./day on days 16, 17 and 18 of pregnancy and 21-day-old fetuses were obtained; controls received the same volume of saline. In an unbiased stereological approach, Cavalieri’s principle and an optical fractionator were used for estimating volume and total cell number of the PVN, respectively. The intensity of corticotropin-releasing hormone (CRH) immunoreactivity in the median eminence (ME) was determined by CRH optical density and the adrenocorticotropic hormone (ACTH) relative fluorescence signal intensity (RIF) in pituitary corticotrophs was measured using Image J. Significant reductions (p < 0.05) in PVN volume and cell number were found in fetuses exposed to Dx. Additionally, CRH optical density in the ME and ACTH RIF (p < 0.05) in the corticotrophs were decreased. The established results suggest that the reduced number of cells in the PVN after maternal Dx administration negatively affects the CRH content in the ME and the ACTH quantity in pituitary corticotrophs in near-term fetuses.  相似文献   

2.
Passive immunization of pregnant rats with a specific antiserum to rat GRF (GRF-AS) is followed by a decrease in fetal serum GH on the 19th day of gestation. A significant reduction in serum GH is still observed in older fetuses and newborn rats. Pituitary GH content increases in 19- and 20-day-old fetuses after GRF-AS administration to their mothers. These results suggest that endogenous fetal hypothalamic GRF (or placenta GRF) play a physiological role in the secretion of pituitary GH as early as the 19th day of fetal life and may be responsible for the peak of GH release that occurs in fetuses at the end of gestation.  相似文献   

3.
Exposure to glucocorticoids leads to numerous changes in various biological systems including the reproductive system. The aim of the present work was to find out whether dexamethasone (Dx) treatment of adult female rats would influence the histological and morphometric characteristics of the pituitary gonadotrophic cells (luteinizing--LH cells and follicle stimulating--FSH cells). One group of female Wistar rats received Dx injections on three consecutive days in doses 1.0, 0.5 and 0.5 mg/kg b.w. respectively, while the control rats were treated with equivalent volumes of saline. Experimental and control animals were sacrificed 24 h and 72 h after the last injection. The peroxidase-antiperoxidase (PAP) immunocytochemical procedure was used to study the LH and FSH cells. The stereological and morphometric analyses showed that multiple Dx treatments of female rats significantly decreased the volume of LH cells and the volume of their nuclei 24 h and 72 h after the last Dx injection in comparison with control values. At 24 h after Dx treatment, the volume density of LH cells was significantly increased, but at 72 h differences between the experimental and control groups were insignificant. The increase in number of LH cells per unit area (mm2) was significant at both timepoints (24 h and 72 h). Stereologic and morphometric characteristics of FSH cells was changed after Dx treatment in the same manner as that of LH cells, except for the volume density, where a significant increase was established 24 h and 72 h after the last Dx application. These results clearly demonstrate that 24 h and 72 h after the last of three Dx injections there were changes in the immunocytochemical and morphometric features of gonadotrophic cells.  相似文献   

4.
The effect of in vivo chronic administration of recombinant human growth hormone (rhGH) on morphology and individual GH release in somatotroph cells was evaluated in young male Wistar rats. Over an 18-day period, 30-day-old male rats were injected daily with 1.5 1U rhGH/kg (GPG group) or saline (VPG group) by subcutaneous injection. Electron-immunocytochemical, ultrastructural and morphometric studies of somatotroph cells were carried out. Additionally, rat pituitary cells were dispersed and overall and individual GH release was studied by radioimmunoassay and cell immunoblot assay (quantified by image analysis), respectively. The ultrastructure and size of somatotroph cells did not change, but volume density of secretion granules was reduced (p<0.01) by previous in vivo GH treatment. At four days, basal GH release of rat pituitary cell monolayer cultures was lower in the GPG group than in the VPG group (p<0.05); after 12 hours of culture, GHRH stimulation of GH release was lower in the GPG group than in the VPG group (p<0.05), and GHRH+SRIH inhibited GH release in the GPG group (p<0.05), but not in the VPG group. The percentage of somatotroph cells was not modified, but the ratio of strongly/weakly GH-immunostained cells had changed; weakly GH-immunostained cells increased from 34% to 55%. Moreover, in vitro treatment with GHRH, SRIH, and both, easily changed the strongly/weakly GH-immunostained cell ratio. Individual GH release, however, was not changed by previous in vivo GH treatment, although GHRH preferably stimulated a subpopulation of GH cells and SRIH did not inhibit individual GH release. These data suggest that exogenous chronic rhGH treatment down-regulates somatotroph function by modifying the proportion of GH cell subpopulation.  相似文献   

5.
The developmental toxicity of the potent adenosine deaminase (ADA) inhibitor, pentostatin (2'-deoxycoformycin), was investigated in pregnant rats and rabbits administered daily iv doses during organogenesis. Rats received 0, 0.01, 0.10, or 0.75 mg/kg on gestation days 6-15 and rabbits received 0, 0.005, 0.01, or 0.02 mg/kg on gestation days 6-18 and maternal and fetal parameters were evaluated on gestation day 21 (rats) or 30 (rabbits). Live fetuses were examined for external, visceral, and skeletal malformations and variations. In rats, maternal body weight gain and food consumption were significantly suppressed at doses of 0.10 and 0.75 mg/kg during the treatment period but returned to control levels during posttreatment. Increased postimplantation loss and decreased numbers of live fetuses, litter size, and fetal body weight were observed at 0.75 mg/kg. A statistically significant increase in the incidence of vertebral malformations occurred at 0.75 mg/kg. The incidence of certain skeletal variations (extra presacral vertebrae, extra ribs, hypoplastic vertebrae) was also increased at 0.75 mg/kg. Ossification of cervical centra was reduced at 0.75 mg/kg compared with controls. In rabbits, marked maternal toxicity (death, body weight loss, and decreased food consumption) and reproductive toxicity (abortion and premature delivery) occurred in all pentostatin-treated groups. However, there were no significant effects on number of live fetuses, pre- or postimplantation loss, litter size, or fetal body weights in the animals with live litters. There was also no apparent increase in the incidence of malformations or variations in the live fetuses of pentostatin-treated rabbits. Thus, these studies demonstrate developmental toxicity of pentostatin in rats and rabbits, and teratogenicity in rats, at maternally toxic doses.  相似文献   

6.
Primary cell cultures were prepared from fetal, neonatal and adult rat pituitaries and evaluated for their ability to secrete growth hormone (GH) in response to growth hormone-releasing factor (GRF). Pituitary cells prepared from fetuses at days 19 and 21 of gestation, neonatal animals at the day of birth (day 0) or the following day (day 1) and peripubertal male rats showed full dose response curves to GRF with maximal GH release when stimulated with 1 X 10(-10) M rat GRF. At this concentration of GRF, the amount of GH released was not different from that elicited by activation of adenylate cyclase with 1 X 10(-5) M forskolin. In contradistinction, a preparation of cells from fetuses at day 18 of gestation did not show the same release of GH when challenged with 1 X 10(-10) M GRF and forskolin (0.057 +/- 0.001, compared to 0.076 +/- 0.003 micrograms/10(5) cells per 4.5 h), although the cells clearly responded to both secretagogues (basal levels of GH, 0.029 +/- 0.002 micrograms/10(5) cells per 4.5 h). While cells prepared from fetuses at day 21 of gestation or from animals after birth released 5-10% of their total cellular GH content, those prepared from 18- and 19-day fetuses released as much as 40% of their total GH suggesting there is a maturation of intracellular GH processing that occurs late in gestation. The results show that, in late pregnancy, the rat fetal pituitary is highly responsive to growth hormone-releasing factor and suggest that this peptide participates in regulating GH levels during the perinatal period.  相似文献   

7.
Insulin content in the pancreas and blood plasma of encephalectomized, decapitated and intact rat fetuses was measured by radioimmunoassay. Encephalectomy and decapitation of 17.5-day-old fetuses did not produce any significant effect on insulin concentration in the pancreas and blood plasma of 21-day-old fetuses. Injection of glucose to 21-day-old operated fetuses raised insulin secretion, which seems to be related to the potentiating action of maternal and (or) fetal humoral factors. The data obtained indicate that synthesis and basal secretion of insulin to the blood are not disturbed by the lack of the hypothalamohypophyseal control in prenatal rats.  相似文献   

8.
Growth hormone (GH) was measured in the sera of control, hypothyroid (thyroidectomized [Tx]) and GH-treated Tx rats and their fetuses on Days 19, 20, 21, and 22 of gestation and in their progenies on postnatal Days 1, 5, 30, and 75. Maternal endogenous serum GH increased dramatically between the 19th and 20th days of gestation and remained elevated through the 22nd day in control rats, but was depressed significantly in Tx and GH-treated Tx rats during this period. GH was not always detected in the sera of 19-day-old fetuses. On Day 20, GH was depressed in fetuses of Tx mothers as compared with those form controls or GH-treated Tx mothers. GH was elevated in sera of fetuses from GH-treated Tx rats over fetuses of control and Tx only rats on the 22nd day of gestation. In postnatal rats, those from GH-treated mothers continued to show elevated serum GH on Day 1 as compared with those from Tx only mothers. On postnatal Days 5 and 30, progenies of Tx mothers had significantly elevated GH as compared with progenies of control mothers. At 75 days of age, the GH levels of these progenies had normalized. We have shown previously that the hormonal secretions of the pituitary-thyroid axis are badly disrupted in the progenies of Tx and GH-treated Tx mothers and that even as adults these animals have tissue (brain and liver) deficits of active thyroid hormones. Although the onset of GH secretion is mildly delayed in fetuses of Tx but not GH-treated Tx mothers, the serum GH levels of both groups of progenies are elevated during most of the neonatal period through the time of puberty. It is, therefore, concluded that GH in the absence of adequate levels of thyroid hormones is ineffective in preventing many of the learning and memory deficits induced in the progenies of Tx mothers.  相似文献   

9.
G T Shishkina 《Ontogenez》1990,21(1):76-80
Testosterone level in male fetuses and adults after glucocorticoid injection to their mothers on 16-th and 18-th days of pregnancy as well as morphometric characteristics of male adult reproductive system of two outbred strains (aggressive and domesticated) were investigated. Prenatal hormonal treatment resulted in genotype-dependent changes in testosterone level in 21-day-old male fetuses; it was decreased in fetuses of domesticated rats and increased in fetuses of aggressive rats. The direction of these changes coincided completely with the subsequent changes in relative weight of preputial gland and seminal vesicles in adults. Thus, the level of glucocorticoids during prenatal period plays an important role in reproductive system development and the character of the action depends on the genotype.  相似文献   

10.
The effects of increased physical activity during pregnancy on the health of the offspring in later life are unknown. Research in this field requires an animal model of exercise during pregnancy that is sufficiently strenuous to cause an effect but does not elicit a stress response. Previously, we demonstrated that two models of voluntary exercise in the nonpregnant rat, tower climbing and rising to an erect bipedal stance (squat), cause bone modeling without elevating the stress hormone corticosterone. In this study, these same models were applied to pregnant rats. Gravid Wistar rats were randomly divided into three groups: control, tower climbing, and squat exercise. The rats exercised throughout pregnancy and were killed at day 19. Maternal stress was assessed by fecal corticosterone measurement. Maternal bone and soft tissue responses to exercise were assessed by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry. Maternal weight gain during the first 19 days of pregnancy was less in exercised than in nonexercised pregnant control rats. Fecal corticosterone levels did not differ between the three maternal groups. The fetuses responded to maternal exercise in a uterine position-dependent manner. Mid-uterine horn fetuses from the squat exercise group were heavier (P < 0.0001) and longer (P < 0.0001) and had a greater placental weight (P = 0.001) than those from control rats. Fetuses from tower-climbing dams were longer (P < 0.0001) and had heavier placentas (P = 0.01) than those from control rats, but fetal weight did not differ from controls. These models of voluntary exercise in the rat may be useful for future studies of the effects of exercise during pregnancy on the developmental origins of health and disease.  相似文献   

11.
Neonates with premature rupture of the membrane and oligohydramnios have an increased risk of acute respiratory morbidity. The aims of this study are to investigate the effects of experimental oligohydramnios on transforming growth factor (TGF)-beta1 and connective tissue growth factor (CTGF) expressions and collagen level in fetal rat lungs. On day 16 of gestation, we anesthetized timed pregnant Sprague-Dawley dams, punctured the uterine wall and fetal membranes of each amniotic sac which resulted in oligohydramnios. Fetuses in the opposite uterine horn served as controls. On days 19 and 21 of gestation, fetuses were delivered by cesarean section. Rats exposed to oligohydramnios exhibited significantly lower lung weight/body weight ratios on days 19 and 21 of gestation than did the control rats. Lung type I collagen and TGF-beta1 mRNA expressions and lung collagen levels were significantly decreased in rats exposed to oligohydramnios on days 19 and 21 of gestation. Type I collagen and inhibitors of metalloproteinase-1 (TIMP-1) proteins were decreased and matrix metalloproteinase-1 (MMP-1) was increased in oligohydramnios-exposed rats on days 19 and 21 of gestation. CTGF mRNA expressions were comparable between control and oligohydramnios-exposed rats on days 19 and 21 of gestation. These data suggest that downregulation of collagen might be involved in the pathogenesis of oligohydramnios-induced respiratory morbidity.  相似文献   

12.
The purpose of the present study was to examine the effects of exercise on maternal glycogen storage patterns and fetal outcome in mature (approximately 12 months of age) Sprague-Dawley rats. The exercise consisted of treadmill running at 30 m.min-1, on a 10 degree incline, for 60 min, 5 days per week, for 4 weeks prior to pregnancy, which continued until day 19 of gestation. In mature animals, chronic exercise increased (p < 0.05) liver glycogen concentration in both pregnant and nonpregnant rats. In pregnant exercised animals, the glycogen concentration of the maternal liver increased almost twofold (p < 0.05) compared with the sedentary pregnant group. There was no difference in the amount of glycogen stored in the gastrocnemius or soleus muscles in response to training, pregnancy, or chronic maternal exercise in the mature rat. In the pregnant groups, there were fewer (p < 0.05) viable fetuses and more (p < 0.05) resorption sites than in young rats. In addition, exercise during pregnancy in the mature animal decreased (p < 0.05) fetal body weight. These results demonstrate that a conflict may exist between maternal exercise and fetal demands for energy in the mature rat. This conflict seems to favour the maternal system, as evidenced by the enhanced maternal liver glycogen storage and the negative effect on fetal growth.  相似文献   

13.
C M Chen  L F Wang  K T Cheng  H H Hsu  B Gau  B Su 《Phytomedicine》2004,11(6):509-515
We investigated the effects of maternal administration of Anoectochilus formosanus extract and dexamethasone on lung maturation in preterm rats. A. formosanus group mothers were tube-fed A. formosanus extract (300 mg/kg body wt./day) for 7 days from days 12-18 of gestation. Dexamethasone group mothers were injected intraperitoneally with dexamethasone (0.2 mg/kg body wt.) in saline on day 18 of gestation. Control group mothers were similarly injected with saline alone. On day 19 of gestation, fetuses were delivered by cesarean section. A. formosanus treatment significantly increased the fetal lung/body weight ratio, as compared to dexamethasone treatment. Saturated phosphatidylcholine levels in fetal lung tissue and growth hormone levels in maternal serum were significantly increased in the A. formosanus- and dexamethasone-treated groups as compared to controls. The histological appearance of preterm rat lungs revealed extensive branching of intermediate airways, denser mesenchyme, and more epithelial tubules in the dexamethasone and A. formosanus groups as compared with the control group. These results suggest that antenatal A. formosanus treatment may play a role in accelerating fetal rat lung maturation.  相似文献   

14.
Ethylmercuric chloride (EtHg), at the dose of 2.5 mg Hg/kg, was administered by gavage every other day to pregnant rats from d 6 to 20 of gestation. On the 21st day of gestation, females were sacrificed to allow the evaluation of embryotoxicity and take the material for analytical determinations. Copper, zinc, iron, and calcium were determined by AAS in liver, kidneys, brain, intestines of fetal and pregnant female rats, as well as in maternal spleen, whole blood, placenta, and fetal carcass. Ethylmercury caused a decrease of the body weight gain during gestation and diminution of relative liver weight of intoxicated females. This compound also induced fetotoxic effects, evidenced by slight diminution of the length as well as the weight of fetuses. It was found that the effect of EtHg on the levels of endogenous metals is different in females and fetuses. In pregnant females, EtHg administration resulted in a significant increase of copper levels in kidneys, liver, and spleen: and in the decrease of zinc concentration in the kidneys, but an increase in placenta and blood compared with pregnant controls. EtHg induced slight decrease of iron concentration in kidneys and intestinal wall of pregnant females. The concentrations of iron in liver and kidney and of zinc in whole blood and liver were lower in control pregnant rats than those in control non-pregnant females. In fetuses of EtHg-exposed mothers, increases in kidney zinc and liver calcium levels were found, whereas tissue copper and iron concentrations were the same as in controls.  相似文献   

15.
Pregnancy is thought to create a metabolic condition of accelerated starvation. To clarify this idea, the effect of fasting on pregnant rats (day 21 of gestation) and their fetuses was examined. Although pregnancy significantly increased plasma insulin, plasma ketone body concentrations in fed pregnant rats were higher than those of age-matched fed virgin rats. After 48 hr fasting (i.e., fasting during days 19-21 of gestation), plasma insulin was markedly decreased in virgin rats compared with term pregnant rats, while ketone bodies were significantly higher in pregnant rats than in virgin rats. Body weight was lower in fetuses from fasted mothers than those from fed mothers. Starvation also markedly diminished the insulin response to glucose in isolated, perfused pancreases in both virgin and pregnant rats. The amount of insulin released during glucose stimulation was greater in pregnancy, and the inhibitory effect of 48 hr fasting on insulin release was greater in virgin rats than in pregnant rats. It is possible, therefore, that in term pregnant rats a decrease in insulin release caused by fasting may cause more profound catabolism than in nongravid rats.  相似文献   

16.
The effects of maternal malnutrition on fetal lung growth and surface forces were studied in albino rats. Pregnant albino rats were subjected to one of the following diets: rat chow ad lib. (controls), partial food deprivation (intake one-half that of the controls), complete food deprivation for 4 days (on gestation day 3-7, 9-13, or 17-21), low protein (8%), and fat free. The fetal lungs were studied on the 21st day of gestation (delivered by cesarean section) or at birth (gestation day 22). Fetuses and neonates after maternal food deprivation (FD) on the 17-21 day of pregnancy, and after a low-protein (LP) diet during pregnancy, had significantly smaller body weight and lung wet or dry weight/body weight ratio (hypocellular lungs). The minimum surface tension (gamma min) of fetal lung extracts was significantly increased with FD and LP. This was associated with a reduction of about 35% in lung lecithin content, expressed per lung DNA. The earlier in pregnancy the rat was subjected to 4-day food deprivation the less the effect on the fetus. At birth the gamma min and the lung lecithin content reached control values. This recovery occurred after birth (at age 4-10 h) and prior to first feeding. However, the lungs remained small and hypocellular. The results indicate that the nutritional status of the pregnant rat influences the surface activity and the growth of the fetal lung.  相似文献   

17.
Pregnant rats were treated with 30 mg metopirone (M) each day for 2 days and autopsied on the third day in various gestational periods (Days 18-20, 19-21, and 20-22). Control rats were treated with saline alone (S). The adrenals of intact fetuses in M-treated dams were significantly heavier than those of intact fetuses in S-treated dams in every experimental period. In both M- and S-treated dams, the adrenals of encephalectomized (E) fetuses were lighter than those of intact littermates. However, in the experimental period of Days 18-20 and 19-21, the adrenals of E fetuses in M-treated dams were slightly but significantly heavier than those of similar E fetuses in S-treated dams. In contrast, in the experimental period Days 20-22, there was no significant difference in the weight of adrenals of E fetuses of M- and S-treated dams. These changes in fetal adrenal weight were reflected histologically in parallel changes in the size of adrenocortical cells. The observations suggest that the fetal adrenal hypertrophy following maternal treatment with metopirone can occur to some extent independent of the fetal brain, but that close to the end of gestation the hypertrophy occurs completely under the control of the fetal brain.  相似文献   

18.
BACKGROUND: Emodin, a widely available herbal remedy, was evaluated for potential effects on pregnancy outcome. METHODS: Emodin was administered in feed to timed-mated Sprague-Dawley (CD) rats (0, 425, 850, and 1700 ppm; gestational day [GD] 6-20), and Swiss Albino (CD-1) mice (0, 600, 2500 or 6000 ppm; GD 6-17). Ingested dose was 0, 31, 57, and approximately 80-144 mg emodin/kg/day (rats) and 0, 94, 391, and 1005 mg emodin/kg/day (mice). Timed-mated animals (23-25/group) were monitored for body weight, feed/water consumption, and clinical signs. At termination (rats: GD 20; mice: GD 17), confirmed pregnant dams (21-25/group) were evaluated for clinical signs: body, liver, kidney, and gravid uterine weights, uterine contents, and number of corpora lutea. Fetuses were weighed, sexed, and examined for external, visceral, and skeletal malformations/variations. RESULTS: There were no maternal deaths. In rats, maternal body weight, weight gain during treatment, and corrected weight gain exhibited a decreasing trend. Maternal body weight gain during treatment was significantly reduced at the high dose. In mice, maternal body weight and weight gain was decreased at the high dose. CONCLUSIONS: Prenatal mortality, live litter size, fetal sex ratio, and morphological development were unaffected in both rats and mice. At the high dose, rat average fetal body weight per litter was unaffected, but was significantly reduced in mice. The rat maternal lowest observed adverse effect level (LOAEL) was 1700 ppm; the no observed adverse effect level (NOAEL) was 850 ppm. The rat developmental toxicity NOAEL was > or =1700 ppm. A LOAEL was not established. In mice, the maternal toxicity LOAEL was 6000 ppm and the NOAEL was 2500 ppm. The developmental toxicity LOAEL was 6000 ppm (reduced fetal body weight) and the NOAEL was 2500 ppm.  相似文献   

19.
Thirty-six pregnant Wistar strain albino rats were exposed throughout pregnancy to 6000-MHz microwave radiation at a power density level of 35 mW/cm2 or were used as controls. The irradiation did not cause a significant increase in maternal body temperature as measured by a rectal thermocouple. The rats were randomly assigned to one of four groups: home cage control (5), anechoic chamber control (10), sham-irradiated concurrent control (10), and irradiated (11). All animals were killed on the 22nd day of gestation, and maternal tissues were removed and weighed and maternal blood samples were taken. The 384 resultant fetuses and their placentas were individually weighed, fixed, and dissected to determine normality. Teratologic evaluation included the following parameters: maternal weight and weight gain; mean litter size; maternal organ weight and organ weight/body weight ratios; body weight ratios of brain, liver, kidneys, and ovaries; maternal peripheral blood parameters including hematocrit, hemoglobin, and white cell counts; number of resorptions and resorption rate; number of abnormalities and abnormality rate; mean term fetal weight. The irradiated fetuses exhibited slight but statistically significant growth retardation at term. Term maternal monocyte count was also significantly depressed. No other parameters differed between the control groups and the irradiated group.  相似文献   

20.
Compared to younger rats, old rats exhibit prolonged elevations of plasma ACTH and corticosterone (CORT) in response to stress. In addition, CORT crosses the placenta. To investigate whether fetuses of older rats may be exposed to higher concentrations of CORT during development than fetuses of young rats, we compared the effects of stress on hypothalamic-pituitary-adrenal (HPA) axis function in young and aging pregnant rats and their 19-day-old fetuses. The plasma of the mothers and fetuses was assayed for ACTH and CORT by radioimmunoassay. Both young and aging pregnant rats showed a significant increase in plasma ACTH and CORT immediately after exposure to stress. However, aging rats had more prolonged elevations of ACTH and CORT than young rats. This suggests that, like old male rats, aging pregnant rats have an alteration in feedback inhibition of the HPA axis. Prolonged elevation of CORT was also seen in fetuses of aging mothers. These results have important implications concerning the effects of stress during pregnancy at different maternal ages, and for the potential deleterious consequences of prolonged prenatal elevation in stress hormones on the offspring of aging females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号