首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
植物谷氨酰胺合成酶研究进展及其应用前景   总被引:2,自引:0,他引:2  
氮素是制约作物产量的主要营养元素之一,谷氨酰胺合成酶(Glutamine synthase,GS;EC 6.3.1.2)是氮素代谢途径中的关键酶。目前,拟南芥、水稻、小麦和玉米等植物中的GS成员均已被分离鉴定。研究表明,超表达GS能够提高植物对氮素的利用效率,从而在植株的生长发育特别是产量形成过程中发挥重要作用,但是其功能在不同植物上并不完全一致,可能与GS基因受到转录和翻译后等水平的调控有关。以下综述了植物GS基因分类、QTL定位、对氮素代谢响应、组织表达特异性、生物学功能及其分子调控机制等方面的研究进展,并展望了植物GS基因的应用前景,以期为利用GS基因来提高植物氮素利用效率提供具有参考价值的信息。  相似文献   

2.
3.
4.
5.
构建了同时含有胞质谷氨酰胺合成酶(GS1)cDNA和叶绿体谷氨酰胺合成酶(GS2)cDNA的植物表达载体p2GS,通过农杆菌介导法用它们转化了水稻品种"中花10号"的成熟胚愈伤组织,经潮霉素(Hyg)筛选培养及分化再生,获得了抗Hyg的转基因水稻植株.PCR和基因组Southern杂交分析结果证明,GS1和GS2基因均已经整合到转基因水稻的基因组内.Northern杂交实验结果证实,GS1和GS2基因在转基因水稻的转录水平上得到了有效表达.在以0.7 mmol/L的(NH4)2SO4取代了其中氮成分的MS培养基上测试植株生长量,结果表明转基因植株鲜重增长量显著高于对照,证明高效表达GS增强了转基因水稻对土壤氮素缺乏的耐性.  相似文献   

6.
Glutamine synthetase (GS; E.C.6.3.1.2) is a key enzyme in higher plants with two isozymes, cytosolic GS1 and plastidic GS2, and involves in the assimilation and recycling of NH4+ ions and maintenance of complex traits such as crop nitrogen-use efficiency and yield. Our present understanding of crop nitrogen-use efficiency and its correlation with the functional role of the GS family genes is inadequate, which delays harnessing the benefit of this key enzyme in crop improvement. In this report, we performed a comprehensive investigation on the phylogenetic relationship, structural properties, complex multilevel gene regulation, and expression patterns of the GS genes to enrich present understanding about the enzyme. Our Gene Ontology and protein–protein interactions analysis revealed the functional aspects of GS isozymes in stress mitigation, aging, nucleotide biosynthesis/transport, DNA repair and response to metals. The insight gained here contributes to the future research strategies in developing climate-smart crops for global sustainability.  相似文献   

7.
A major source of inorganic nitrogen for rice plants grown in paddy soil is ammonium ions. The ammonium ions are actively taken up by the roots via ammonium transporters and subsequently assimilated into the amide residue of glutamine (Gln) by the reaction of glutamine synthetase (GS) in the roots. The Gln is converted into glutamate (Glu), which is a central amino acid for the synthesis of a number of amino acids, by the reaction of glutamate synthase (GOGAT). Although a small gene family for both GS and GOGAT is present in rice, ammonium-dependent and cell type-specific expression suggest that cytosolic GS1;2 and plastidic NADH-GOGAT1 are responsible for the primary assimilation of ammonium ions in the roots. In the plant top, approximately 80% of the total nitrogen in the panicle is remobilized through the phloem from senescing organs. Since the major form of nitrogen in the phloem sap is Gln, GS in the senescing organs and GOGAT in developing organs are important for nitrogen remobilization and reutilization, respectively. Recent work with a knock-out mutant of rice clearly showed that GS1;1 is responsible for this process. Overexpression studies together with age- and cell type-specific expression strongly suggest that NADH-GOGAT1 is important for the reutilization of transported Gln in developing organs. The overall process of nitrogen utilization within the plant is discussed.  相似文献   

8.
In Pisum sativum, two classes of genes encode distinct isoforms of cytosolic glutamine synthetase (GS). The first class comprises two nearly identical or “twin” GS genes (GS341 and GS132), while the second comprises a single GS gene (GS299) distinct in both coding and noncoding regions from the “twin” GS genes. Gene-specific analyses were used to monitor the individual contribution of each gene for cytosolic GS during root nodule development and in cotyledons during germination, two contexts where large amounts of ammonia must be assimilated by GS for nitrogen transport. mRNAs corresponding to all three genes for cytosolic GS were shown to accumulate coordinately during a time course of nodule development. All the GS mRNAs also accumulate to wild-type levels in mutant nodules formed by a nifD strain of Rhizobium leguminosarum indicating that induced GS expression in pea root nodules does not depend on the production of ammonia. Distinct patterns of expression for the two classes of GS genes were observed in certain mutant root nodules and most dramatically in cotyledons of germinating seedlings. The different patterns of expression between the two classes of genes for cytosolic GS suggests that their distinct gene products may serve nonoverlapping functions during pea development.  相似文献   

9.
In plants, ammonium released during photorespiration exceeds primary nitrogen assimilation by as much as 10-fold. Analysis of photorespiratory mutants indicates that photorespiratory ammonium released in mitochondria is reassimilated in the chloroplast by a chloroplastic isoenzyme of glutamine synthetase (GS2), the predominant GS isoform in leaves of Solanaceous species including tobacco (Nicotiana tabacum). By contrast, cytosolic GS1 is expressed in the vasculature of several species including tobacco. Here, we report the effects on growth and photorespiration of overexpressing a cytosolic GS1 isoenzyme in leaf mesophyll cells of tobacco. The plants, which ectopically overexpress cytosolic GS1 in leaves, display a light-dependent improved growth phenotype under nitrogen-limiting and nitrogen-non-limiting conditions. Improved growth was evidenced by increases in fresh weight, dry weight, and leaf soluble protein. Because the improved growth phenotype was dependent on light, this suggested that the ectopic expression of cytosolic GS1 in leaves may act via photosynthetic/photorespiratory process. The ectopic overexpression of cytosolic GS1 in tobacco leaves resulted in a 6- to 7-fold decrease in levels of free ammonium in leaves. Thus, the overexpression of cytosolic GS1 in leaf mesophyll cells seems to provide an alternate route to chloroplastic GS2 for the assimilation of photorespiratory ammonium. The cytosolic GS1 transgenic plants also exhibit an increase in the CO(2) photorespiratory burst and an increase in levels of photorespiratory intermediates, suggesting changes in photorespiration. Because the GS1 transgenic plants have an unaltered CO(2) compensation point, this may reflect an accompanying increase in photosynthetic capacity. Together, these results provide new insights into the possible mechanisms responsible for the improved growth phenotype of cytosolic GS1 overexpressing plants. Our studies provide further support for the notion that the ectopic overexpression of genes for cytosolic GS1 can potentially be used to affect increases in nitrogen use efficiency in transgenic crop plants.  相似文献   

10.
11.
The genes encoding non-specific lipid transfer proteins (nsLTPs), members of a small multigene family, show a complex pattern of expressional regulation, suggesting that some diversification may have resulted from changes in their expression after duplication. In this study, the evolution of nsLTP genes within the Poaceae family was characterized via a survey of the pseudogenes and unigenes encoding the nsLTP in rice pseudomolecules and the NCBI unigene database. nsLTP-rich regions were detected in the distal portions of rice chromosomes 11 and 12; these may have resulted from the most recent large segmental duplication in the rice genome. Two independent tandem duplications were shown to occur within the nsLTP-rich regions of rice. The genomic distribution of the nsLTP genes in the rice genome differs from that in wheat. This may be attributed to gene migration, chromosomal rearrangement, and/or differential gene loss. The genomic distribution pattern of nsLTP genes in the Poaceae family points to the existence of some differences among cereal nsLTP genes, all of which diverged from an ancient gene. The unigenes encoding nsLTPs in each cereal species are clustered into five groups. The somewhat different distribution of nsLTP-encoding EST clones between the groups across cereal species imply that independent duplication(s) followed by subfunctionalization (and/or neofunctionalization) of the nsLTP gene family in each species occurred during speciation.  相似文献   

12.
We have shown that the individual members of the plant gene family for glutamine synthetase (GS) are differentially expressed in vivo, and each encode distinct GS polypeptides which are targeted to different subcellular compartments (chloroplast or cytosol). At the polypeptide level, chloroplast GS (GS2) and cytosolic GS (GS1 and GSn) are distinct and show an organ-specific distribution. We have characterized full length cDNA clones encoding chloroplast or cytosolic GS of pea. In vitro translation products encoded by three different GS cDNA clones, correspond to the mature GS2, GS1, and GSn polypeptides present in vivo. pGS185 encodes a precursor to the chloroplast GS2 polypeptide as shown by in vitro chloroplast uptake experiments. The pGS185 translation product is imported into the chloroplast stroma and processed to a polypeptide which corresponds in size and charge to that of mature chloroplast stromal GS2 (44 kDa). The 49 amino terminal amino acids encoded by pGS185 are designated as a chloroplast transit peptide by functionality in vitro, and amino acid homology to other transit peptides. The cytosolic forms of GS (GS1 and GSn) are encoded by highly homologous but distinct mRNAs. pGS299 encodes the cytosolic GS1 polypeptide (38 kDa), while pGS341 (Tingey, S. V., Walker, E. L., and Coruzzi, G. M. (1987) EMBO. J. 6, 1-9) encodes a cytosolic GSn polypeptide (37 kDa). The homologous nuclear genes for chloroplast and cytosolic GS show different patterns of expression in vivo. GS2 expression in leaves is modulated by light, at the level of steady state mRNA and protein, while the expression of cytosolic GS is unaffected by light. The light-induced expression of GS2 is due at least in part to a phytochrome mediated response. Nucleotide sequence analysis indicates that chloroplast and cytosolic GS have evolved from a common ancestor and suggest a molecular mechanism for chloroplast evolution.  相似文献   

13.
Ninety-eight backcross inbred lines (BC1F6) developed between Nipponbare, a japonica rice, and Kasalath, an indica rice were employed to detect putative quantitative trait loci (QTLs) associated with the contents of cytosolic glutamine synthetase (GS1; EC 6.3.1.2) and NADH-glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in leaves. Immunoblotting analyses showed transgressive segregations toward lower or greater contents of these enzyme proteins in these backcross inbred lines. Seven chromosomal QTL regions for GS1 protein content and six for NADH-GOGAT protein content were detected. Some of these QTLs were located in QTL regions for various biochemical and physiological traits affected by nitrogen recycling. These findings suggested that the variation in GS1 and NADH-GOGAT protein contents in this population is related to the changes in the rate of nitrogen recycling from senescing organs to developing organs, leading to changes in these physiological traits. Furthermore, a structural gene for GS1 was mapped between two RFLP markers, C560 and C1408, on chromosome 2 and co-located in the QTL region for one-spikelet weight. A QTL region for NADH-GOGAT protein content was detected at the position mapped for the NADH-GOGAT structural gene on chromosome 1. A QTL region for soluble protein content in developing leaves was also detected in this region. Although fine mapping is required to identify individual genes in the future, QTL analysis could be a useful post-genomic tool to study the gene functions for regulation of nitrogen recycling in rice.  相似文献   

14.
The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pisum sativum than to each other. Studies in which gene-specific probes are used show that both MtGSa and MtGSb are induced during symbiotic root nodule development, although not coordinately. MtGSa is the most highly expressed GS gene in nodules but is also expressed to lower extents in a variety of other organs. MtGSb shows higher levels of expression in roots and the photosynthetic cotyledons of seedlings than in nodules or other organs. In roots, both genes are expressed in the absence of an exogenous nitrogen source. However the addition of nitrate leads to a short-term, 2- to 3-fold increase in the abundance of both mRNAs, and the addition of ammonium leads to a 2-fold increase in MtGSb mRNA. The nitrogen supply, therefore, influences the expression of the two genes in roots, but it is clearly not the major effector of their expression. In the discussion section, the expression of the GS gene family of the model legume M. truncatula is compared to those of other leguminous plants.  相似文献   

15.
Glutamine synthetase (GS; EC 6.3.1.2) is present in different subcellular compartments in plants. It is located in the cytoplasm in root and root nodules while generally present in the chloroplasts in leaves. The expression of GS gene(s) is enhanced in root nodules and in soybean roots treated with ammonia. We have isolated four genes encoding subunits of cytosolic GS from soybean (Glycine max L. cv. Prize). Promoter analysis of one of these genes (GS15) showed that it is expressed in a root-specific manner in transgenic tobacco and Lotus corniculatus, but is induced by ammonia only in the legume background. Making the GS15 gene expression constitutive by fusion with the CaMV-35S promoter led to the expression of GS in the leaves of transgenic tobacco plants. The soybean GS was functional and was located in the cytoplasm in tobacco leaves where this enzyme is not normally present. Forcing this change in the location of GS caused concomitant induction of the mRNA for a native cytosolic GS in the leaves of transgenic tobacco. Shifting the subcellular location of GS in transgenic plants apparently altered the nitrogen metabolism and forced the induction in leaves of a native GS gene encoding a cytosolic enzyme. The latter is normally expressed only in the root tissue of tobacco. This phenomenon may suggest a hitherto uncharacterized metabolic control on the expression of certain genes in plants.  相似文献   

16.
17.
18.
Cloning and characterization of microRNAs from rice   总被引:31,自引:0,他引:31       下载免费PDF全文
Sunkar R  Girke T  Jain PK  Zhu JK 《The Plant cell》2005,17(5):1397-1411
  相似文献   

19.
20.
The major isoenzyme of glutamine synthetase found in leaves of angiosperms is the chloroplastic form. However, pine seedlings contain two cytosolic glutamine synthetases in green cotyledons: GS1a, the predominant isoform, and GS1b, a minor enzyme whose relative amount is increased following phosphinotricin treatment. We have cloned a GS1b cDNA, and comparison with the previously reported GS1a cDNA sequence indicated that they correspond to separate cytosolic GS genes encoding distinct protein products. Phylogenetic analysis showed that the newly reported sequence is closer to cytosolic angiosperm GS than to GS1a, suggesting therefore that GS1a could be a divergent gymnospermous GS1 gene. Gene mapping using a F2 family of maritime pine showed co-localization of both GS genes on group 2 of the genetic linkage map. This result supports the proposed origin of different members of the GS1 family by adjacent gene duplication. The implications for gymnosperm genome organization are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号