首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The technological revolution in imaging during recent decades has transformed the way image-guided radiation therapy is performed. Anatomical imaging (plain radiography, computed tomography, magnetic resonance imaging) greatly improved the accuracy of delineating target structures and has formed the foundation of 3D-based radiation treatment. However, the treatment planning paradigm in radiation oncology is beginning to shift toward a more biological and molecular approach as advances in biochemistry, molecular biology, and technology have made functional imaging (positron emission tomography, nuclear magnetic resonance spectroscopy, optical imaging) of physiological processes in tumors more feasible and practical. This review provides an overview of the role of current imaging strategies in radiation oncology, with a focus on functional imaging modalities, as it relates to staging and molecular profiling (cellular proliferation, apoptosis, angiogenesis, hypoxia, receptor status) of tumors, defining radiation target volumes, and assessing therapeutic response. In addition, obstacles such as imaging-pathological validation, optimal timing of post-therapy scans, spatial and temporal evolution of tumors, and lack of clinical outcome studies are discussed that must be overcome before a new era of functional imaging-guided therapy becomes a clinical reality.  相似文献   

2.
The enormous advances in our understanding of the progression of diseases at the molecular level have been supplemented by the new field of ‘molecular imaging’, which provides for in vivo visualization of molecular events at the cellular level in living organisms. Molecular imaging is a noninvasive assessment of gene and protein function, protein–protein interaction and/or signal transduction pathways in animal models of human disease and in patients to provide insights into molecular pathogenesis. Five major imaging techniques are currently available to assess the structural and functional alterations in vivo in small animals. These are (i) optical bioluminescence and fluorescence imaging techniques, (ii) radionuclide-based positron emission tomography (PET) and single photon emitted computed tomography (SPECT), (iii) X-ray-based computed tomography (CT), (iv) magnetic resonance imaging (MRI) and (v) ultrasound imaging (US). Functional molecular imaging requires an imaging probe that is specific for a given molecular event. In preclinical imaging, involving small animal models, the imaging probe could be an element of a direct (‘direct imaging’) or an indirect (‘indirect imaging’) event. Reporter genes are essential for indirect imaging and provide a general integrated platform for many different applications. Applications of multimodality imaging using combinations of bioluminescent, fluorescent and PET reporter genes in unified fusion vectors developed by us for recording events from single live cells to whole animals with high sensitivity and accurate quantification are discussed. Such approaches have immense potential to track progression of metastasis, immune cell trafficking, stem cell therapy, transgenic animals and even molecular interactions in living subjects.  相似文献   

3.
Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them.  相似文献   

4.
The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.  相似文献   

5.
Neuroimaging techniques have evolved over the past several years giving us unprecedented information about the degenerative process in Parkinson's disease (PD) and other movement disorders. Functional imaging approaches such as positron emission tomography (PET) and single photon emission computerised tomography (SPECT) have been successfully employed to detect dopaminergic dysfunction in PD, even while at a preclinical stage, and to demonstrate the effects of therapies on function of intact dopaminergic neurons within the affected striatum. PET and SPECT can also monitor PD progression as reflected by changes in brain levodopa and glucose metabolism and dopamine transporter binding. Structural imaging approaches include magnetic resonance imaging (MRI) and transcranial sonography (TCS). Recent advances in voxel-based morphometry and diffusion-weighted MRI have provided exciting potential applications for the differential diagnosis of parkinsonian syndromes. Substantia nigra hyperechogenicity, detected with TCS, may provide a marker of susceptibility to PD, probably reflecting disturbances of iron metabolism, but does not appear to correlate well with disease severity or change with disease progression. In the future novel radiotracers may help us assess the involvement of non-dopaminergic brain pathways in the pathology of both motor and non-motor complications in PD.  相似文献   

6.
Hybrid or multimodality imaging is often applied in order to take advantage of the unique and complementary strengths of individual imaging modalities. This hybrid noninvasive imaging approach can provide critical information about anatomical structure in combination with physiological function or targeted molecular signals. While recent advances in software image fusion techniques and hybrid imaging systems have enabled efficient multimodal imaging, accessing the full potential of this technique requires development of a new toolbox of multimodal contrast agents that enhance the imaging process. Toward that goal, we report the development of a hybrid probe for both single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) imaging that facilitates high-sensitivity SPECT and high spatial resolution CT imaging. In this work, we report the synthesis and evaluation of a novel intravascular, multimodal dendrimer-based contrast agent for use in preclinical SPECT/CT hybrid imaging systems. This multimodal agent offers a long intravascular residence time (t(1/2) = 43 min) and sufficient contrast-to-noise for effective serial intravascular and blood pool imaging with both SPECT and CT. The colocalization of the dendritic nuclear and X-ray contrasts offers the potential to facilitate image analysis and quantification by enabling correction for SPECT attenuation and partial volume errors at specified times with the higher resolution anatomic information provided by the circulating CT contrast. This may allow absolute quantification of intramyocardial blood volume and blood flow and may enable the ability to visualize active molecular targeting following clearance from the blood.  相似文献   

7.
Several techniques can be used to measure indirectly the effect of drugs (e.g., EEG, fMRI) in healthy volunteers and in patients. Although each technique has its merits, a direct link between drug efficacy and site of action in vivo usually cannot be established. In addition, when the specific mode of action of a drug has been determined from preclinical studies, it is often not known whether the administered dose is optimal for humans. Both industry and academia are becoming more and more interested in determining the dose-related occupancy of specific targets caused by administration of drugs under test. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are noninvasive imaging techniques that can give insight into the relationship between target occupancy and drug efficacy, provided a suitable radioligand is available. Although SPECT has certain advantages (e.g., a long half-life of the radionuclides), the spatial and temporal resolution as well as the labeling possibilities of this technique are limited. This review focuses on PET methodology for conducting drug occupancy studies in humans.  相似文献   

8.
After establishing a biochemical diagnosis, pheochromocytomas and extra-adrenal paragangliomas (PPGLs) can be localized using different anatomical and functional imaging modalities. These include computed tomography, magnetic resonance imaging, single-photon emission computed tomography (SPECT) using 123I-metaiodobenzylguanidine or 111In-DTPA-pentetreotide, and positron emission tomography (PET) using 6-[18F]-fluorodopamine (18F-FDA), 6-[18F]-fluoro-l-3,4-dihydroxyphenylalanine (18F-DOPA), and 2-[18F]-fluoro-2-deoxy-d-glucose. We review the currently available data on the performance of anatomical imaging, SPECT, and PET for the detection of (metastatic) PPGL as well as parasympathetic head and neck paragangliomas. We show that there appears to be no 'gold-standard' imaging technique for all patients with (suspected) PPGL. A tailor-made approach is warranted, guided by clinical, biochemical, and genetic characteristics. In the current era of a growing number of PET tracers, PPGL imaging has moved beyond tumor localization towards functional characterization of tumors.  相似文献   

9.
Polymeric microbubbles (MBs) are gas filled particles composed of a thin stabilized polymer shell that have been recently developed as valid contrast agents for the combined use of ultrasonography (US), magnetic resonance imaging (MRI) and single photon emission computer tomography (SPECT) imaging. Due to their buoyancy, the commonly available approaches to study their behaviour in complex media are not easily applicable and their use in modern medicine requires such behaviour to be fully elucidated. Here we have used for the first time flow cytometry as a new high throughput approach that allows characterisation of the MB dispersion, prior to and after exposure in different biological media and we have additionally developed a method that allows characterisation of the strongly bound proteins adsorbed on the MBs, to fully predict their biological behaviour in biological milieu.  相似文献   

10.
近年来,超声(ultrasound, US)、CT冠状动脉造影(CT coronary angiography, CCTA)、血管内超声(intravenous ultrasound,IVUS)、光学相干断层成像(optical coherence tomography, OCT)、多层螺旋CT成像(multi-slice computed tomography, MSCT)、单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)、正电子发射计算机断层成像(positron emission computed tomography, PET)及心脏磁共振(cardiac magnetic resonance, CMR)等多种心血管成像技术能够提供与冠脉病变及心肌形态和功能相关的解剖学、血流动力学、细胞生物学及病理生理学等方面的重要信息,在缺血性心肌病的临床诊疗及预后评估中发挥着日益重要的作用。然而,如何恰当选择的多模态心血管影像技术是临床医师面临的一大难题。因此,本文在归纳总结主要心血管成像技术临床应用进展的基础上,对多模态心血管影像学在缺血性心肌病相关的冠脉解剖与斑块成像、心肌功能、心肌灌注及心肌活性显像中的临床应用价值进行综述。旨在帮助临床医师客观认识各种成像技术的优势与不足,从而制定最优化的选择方案。  相似文献   

11.
Immuno-imaging is a developing technology that aims at studying disease in patients using imaging techniques such as positron emission tomography in combination with radiolabeled immunoglobulin derived targeting probes. Nanobodies are the smallest antigen-binding antibody-fragments and show fast and specific targeting in vivo. These probes are currently under investigation as therapeutics but preclinical studies indicate that nanobodies could also become the next generation of magic bullets for immuno-imaging. Initial data show that imaging can be performed as early as 1 hour post-injection enabling the use of short-lived radio-isotopes. These unique properties should enable patient friendly and safe imaging protocols. This review focuses on the current status of radiolabeled nanobodies as targeting probes for immuno-imaging.  相似文献   

12.
Diagnostic imaging tests and microbial infections   总被引:1,自引:0,他引:1  
Despite significant advances in the understanding of its pathogenesis, infection remains a major cause of patient morbidity and mortality. While the presence of infection may be suggested by signs and symptoms, imaging tests are often used to localize or confirm its presence. There are two principal imaging test types: morphological and functional. Morphological tests include radiographs, computed tomography (CT), magnetic resonance imaging, and sonongraphy. These procedures detect anatomic, or structural, alterations produced by microbial invasion and host response. Functional imaging tests reflect the physiological changes that are part of this process. Prototypical functional tests are radionuclide procedures such as bone, gallium, labelled leukocyte and fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging. In-line functional/morphological tomographic imaging systems, PET/CT and single photon emission tomography (SPECT)/CT, have revolutionized diagnostic imaging. These devices consist of a functional imaging device (PET or SPECT) joined together with a CT scanner. The patient undergoes both tests sequentially without leaving the examination table. Images from each study can be viewed separately and as fused images, providing precisely localized anatomic and functional information. It must be noted, however, that none of the current morphological or functional tests, either alone or in combination, are specific for infection and the goal of finding such an imaging test remains elusive.  相似文献   

13.
Anesthesia and other considerations for in vivo imaging of small animals   总被引:1,自引:0,他引:1  
The use of small animal imaging is increasing in biomedical research thanks to its ability to localize altered biochemical and physiological processes in the living animal and to follow these processes longitudinally and noninvasively. In contrast to human studies, however, imaging of small animals generally requires anesthesia, and anesthetic agents can have unintended effects on animal physiology that may confound the results of the imaging studies. In addition, repeated anesthesia, animal preparation for imaging, exposure to ionizing radiation, and the administration of contrast agents may affect the processes under study. We discuss this interplay of factors for small animal imaging in the context of four common imaging modalities for small animals: positron emission tomography (PET) and single photon emission computed tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging. We discuss animal preparation for imaging, including choice of animal strain and gender, the role of fasting and diet, and the circadian cycle. We review common anesthesias used in small animal imaging, such as pentobarbital, ketamine/xylazine, and isoflurane, and describe techniques for monitoring the respiration and circulation of anesthetized animals that are being imaged as well as developments for imaging conscious animals. We present current imaging literature exemplifying how anesthesia and animal handling can influence the biodistribution of PET tracers. Finally, we discuss how longitudinal imaging studies may affect animals due to repeated injections of radioactivity or other substrates and the general effect of stress on the animals. In conclusion, there are many animal handling issues to consider when designing an imaging experiment. Reproducible experimental conditions require clear, consistent reporting, in the study design and throughout the experiment, of the animal strain and gender, fasting, anesthesia, and how often individual animals were imaged.  相似文献   

14.
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have evolved as sensitive tools for anatomic and metabolic evaluation of breast cancer. In vivo MRS studies have documented the presence of choline containing compounds (tCho) as a reliable biochemical marker of malignancy and also useful for monitoring the tumor response to therapy. Recent studies on the absolute quantification of tCho are expected to provide cut-off values for discrimination of various breast pathologies. Addition of MRS investigation was also reported to increase the specificity of MRI. Further, ex vivo and in vitro MRS studies of intact tissues and tissue extracts provided several metabolites that were not be detected in vivo and provided insight into underlying biochemistry of the disease processes. In this review, we present briefly the role of various 1H MRS methods used in breast cancer research and their potential in relation to diagnosis, monitoring of therapeutic response and metabolism.  相似文献   

15.
Magnetic relaxation switches capable of sensing molecular interactions   总被引:9,自引:0,他引:9  
Highly sensitive, efficient, and high-throughput biosensors are required for genomic and proteomic data acquisition in complex biological samples and potentially for in vivo applications. To facilitate these studies, we have developed biocompatible magnetic nanosensors that act as magnetic relaxation switches (MRS) to detect molecular interactions in the reversible self-assembly of disperse magnetic particles into stable nanoassemblies. Using four different types of molecular interactions (DNA-DNA, protein-protein, protein-small molecule, and enzyme reactions) as model systems, we show that the MRS technology can be used to detect these interactions with high efficiency and sensitivity using magnetic relaxation measurements including magnetic resonance imaging (MRI). Furthermore, the magnetic changes are detectable in turbid media and in whole-cell lysates without protein purification. The developed magnetic nanosensors can be used in a variety of biological applications such as in homogeneous assays, as reagents in miniaturized microfluidic systems, as affinity ligands for rapid and high-throughput magnetic readouts of arrays, as probes for magnetic force microscopy, and potentially for in vivo imaging.  相似文献   

16.
Epilepsy is an abnormal brain state in which a large population of neurons is synchronously active, causing an enormous increase in metabolic demand. Recent investigations using high-resolution imaging techniques, such as optical recording of intrinsic signals and voltagesensitive dyes, as well as measurements with oxygen-sensitive electrodes have elucidated the spatiotemporal relationship between neuronal activity, cerebral blood volume, and oximetry in vivo. A focal decrease in tissue oxygenation and a focal increase in deoxygenated hemoglobin occurs following both interictal and ictal events. This “epileptic dip” in oxygenation can persist for the duration of an ictal event, suggesting that cerebral blood flow is inadequate to meet metabolic demand. A rapid focal increase in cerebral blood flow and cerebral blood volume also accompanies epileptic events; however, this increase in perfusion soon (>2 s) spreads to a larger area of the cortex than the excitatory change in membrane potential. Investigations in humans during neurosurgical operations have confirmed the laboratory data derived from animal studies. These data not only have clinical implications for the interpretation of noninvasive imaging studies such as positron emission tomography, single-photon emission tomography, and functional magnetic resonance imaging but also provide a mechanism for the cognitive decline in patients with chronic epilepsy.  相似文献   

17.
In vivo imaging of siRNA delivery and silencing in tumors   总被引:2,自引:0,他引:2  
With the increased potential of RNA interference (RNAi) as a therapeutic strategy, new noninvasive methods for detection of siRNA delivery and silencing are urgently needed. Here we describe the development of dual-purpose probes for in vivo transfer of siRNA and the simultaneous imaging of its accumulation in tumors by high-resolution magnetic resonance imaging (MRI) and near-infrared in vivo optical imaging (NIRF). These probes consisted of magnetic nanoparticles labeled with a near-infrared dye and covalently linked to siRNA molecules specific for model or therapeutic targets. Additionally, these nanoparticles were modified with a membrane translocation peptide for intracellular delivery. We show the feasibility of in vivo tracking of tumor uptake of these probes by MRI and optical imaging in two separate tumor models. We also used proof-of-principle optical imaging to corroborate the efficiency of the silencing process. These studies represent the first step toward the advancement of siRNA delivery and imaging strategies, essential for cancer therapeutic product development and optimization.  相似文献   

18.
Non-invasive longitudinal detection and evaluation of gene expression in living animals can provide investigators with an understanding of the ontogeny of a gene's biological function(s). Currently, mouse model systems are used to optimize magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and optical imaging modalities to detect gene expression and protein function. These molecular imaging strategies are being developed to assess tumor growth and the tumor microenvironment. In addition, pre-labeling of progenitor cells can provide invaluable information about the developmental lineage of stem cells both in organogenesis and tumorigenesis. The feasibility of this approach has been extensively tested by targeting of endogenous tumor cell receptors with labeled ligand (or ligand analog) reporters and targeting enzymes with labeled substrate (or substrate analog). We will primarily discuss MRI, PET, and SPECT imaging of cell surface receptors and the feasibility of non-invasive imaging of gene expression using the tumor microenvironment (e.g., hypoxia) as a conditional regulator of gene expression.  相似文献   

19.
From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1-12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique.  相似文献   

20.
Diffusion weighted imaging (DWI) has emerged as a unique and powerful non-invasive magnetic resonance imaging (MRI) technique with a major potential impact on imaging-based diagnosis in a variety of clinical applications including oncology and tissue viability assessment. In light of increasing demand for applying this technique in preclinical investigations using small animals, we have explored the potentials of a clinical magnet for acquiring the DWI in rats and mice with either cerebral ischemia or solid tumors. Through technical adaptation and optimization, we have been able to perform a series of clinically relevant animal studies with conclusions based on DWI quantification. Focusing more on practical aspects and cross-referencing with the current literature, this paper is aimed to summarize our ongoing DWI studies on small rodents with stroke and tumors, and to provide protocols for researchers to replicate similar techniques in their own preclinical and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号