首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pseudomonas putida KT2442 is a root-colonizing strain which can use proline, one of the major components in root exudates, as its sole carbon and nitrogen source. A P. putida mutant unable to grow with proline as the sole carbon and nitrogen source was isolated after random mini-Tn5-Km mutagenesis. The mini-Tn5 insertion was located at the putA gene, which is adjacent to and divergent from the putP gene. The putA gene codes for a protein of 1,315 amino acid residues which is homologous to the PutA protein of Escherichia coli, Salmonella enterica serovar Typhimurium, Rhodobacter capsulatus, and several Rhizobium strains. The central part of P. putida PutA showed homology to the proline dehydrogenase of Saccharomyces cerevisiae and Drosophila melanogaster, whereas the C-terminal end was homologous to the pyrroline-5-carboxylate dehydrogenase of S. cerevisiae and a number of aldehyde dehydrogenases. This suggests that in P. putida, both enzymatic steps for proline conversion to glutamic acid are catalyzed by a single polypeptide. The putP gene was homologous to the putP genes of several prokaryotic microorganisms, and its gene product is an integral inner-membrane protein involved in the uptake of proline. The expression of both genes was induced by proline added in the culture medium and was regulated by PutA. In a P. putida putA-deficient background, expression of both putA and putP genes was maximal and proline independent. Corn root exudates collected during 7 days also strongly induced the P. putida put genes, as determined by using fusions of the put promoters to 'lacZ. The induction ratio for the putA promoter (about 20-fold) was 6-fold higher than the induction ratio for the putP promoter.  相似文献   

2.
3.
4.
5.
B Keuntje  B Masepohl    W Klipp 《Journal of bacteriology》1995,177(22):6432-6439
Four Rhodobacter capsulatus mutants unable to grow with proline as the sole nitrogen source were isolated by random Tn5 mutagenesis. The Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments. DNA sequence analysis of this region revealed three open reading frames designated selD, putR, and putA. The putA gene codes for a protein of 1,127 amino acid residues which is homologous to PutA of Salmonella typhimurium and Escherichia coli. The central part of R. capsulatus PutA showed homology to proline dehydrogenase of Saccharomyces cerevisiae (Put1) and Drosophila melanogaster (SlgA). The C-terminal part of PutA exhibited homology to Put2 (pyrroline-5-carboxylate dehydrogenase) of S. cerevisiae and to aldehyde dehydrogenases from different organisms. Therefore, it seems likely that in R. capsulatus, as in enteric bacteria, both enzymatic steps for proline degradation are catalyzed by a single polypeptide (PutA). The deduced amino acid sequence of PutR (154 amino acid residues) showed homology to the small regulatory proteins Lrp, BkdR, and AsnC. The putR gene, which is divergently transcribed from putA, is essential for proline utilization and codes for an activator of putA expression. The expression of putA was induced by proline and was not affected by ammonia or other amino acids. In addition, putA expression was autoregulated by PutA itself. Mutations in glnB, nifR1 (ntrC), and NifR4 (ntrA encoding sigma 54) had no influence on put gene expression. The open reading frame located downstream of R. capsulatus putR exhibited strong homology to the E. coli selD gene, which is involved in selenium metabolism. R. capsulatus selD mutants exhibited a Put+ phenotype, demonstrating that selD is required neither for viability nor for proline utilization.  相似文献   

6.
7.
The PutA protein of Escherichia coli K-12 serves as both proline dehydrogenase and the repressor controlling the expression of genes putP and putA. Thirty-eight hybridoma cell lines were isolated using mice immunized with proline dehydrogenase purified from a bacterial membrane extract. The monoclonal antibodies secreted by those cells showed varying affinities for proline dehydrogenase by enzyme-linked immunosorbent assay (ELISA). Nine antibodies labelled the PutA protein in Western blots after sodium dodecyl sulfate--polyacrylamide gel electrophoresis and two of the five tested also labelled the undenatured PutA protein. Three antibodies bound proteins present in a peripheral membrane protein fraction from both putA+ bacteria and a putA::Tn5 mutant strain. Urea denaturation eliminated the proline:2,6-dichloroindophenol (DCIP) oxidoreductase activity, but did not alter the immunoreactivity of the PutA protein. Tween 20, which caused 1.8-fold increases in Km (proline) and Vmax for proline:DCIP oxidoreductase, increased the avidity of the antibody from hybridoma line 2.1C10.3 fivefold. The antibodies from hybridoma lines 2.1C10.2, 1.2C10.3, and 1.1B07.1 were shown by electron microscopy of immunogold-labelled preparations or by ELISA to bind the membrane-associated PutA protein, whereas those from hybridoma lines 2.1A08.2 and 1.4C09.1 failed to recognize that antigen form. These antibodies will serve as probes of the relationships among protein domain, conformation, and function for the PutA protein.  相似文献   

8.
9.
10.
11.
12.
13.
Pseudomonas aeruginosa is an opportunistic pathogen that may cause severe infections in humans and other vertebrates. In addition, a human clinical isolate of P. aeruginosa, strain PA14, also causes disease in a variety of nonvertebrate hosts, including plants, Caenorhabditis elegans, and the greater wax moth, Galleria mellonella. This has led to the development of a multihost pathogenesis system in which plants, nematodes, and insects have been used as adjuncts to animal models for the identification of P. aeruginosa virulence factors. Another approach to identifying virulence genes in bacteria is to take advantage of the natural differences in pathogenicity between isolates of the same species and to use a subtractive hybridization technique to recover relevant genomic differences. The sequenced strain of P. aeruginosa, strain PAO1, has substantial differences in virulence from strain PA14 in several of the multihost models of pathogenicity, and we have utilized the technique of representational difference analysis (RDA) to directly identify genomic differences between P. aeruginosa strains PA14 and PAO1. We have found that the pilC, pilA, and uvrD genes in strain PA14 differ substantially from their counterparts in strain PAO1. In addition, we have recovered a gene homologous to the ybtQ gene from Yersinia, which is specifically present in strain PA14 but absent in strain PAO1. Mutation of the ybtQ homolog in P. aeruginosa strain PA14 significantly attenuates the virulence of this strain in both G. mellonella and a burned mouse model of sepsis to levels comparable to those seen with PAO1. This suggests that the increased virulence of P. aeruginosa strain PA14 compared to PAO1 may relate to specific genomic differences identifiable by RDA.  相似文献   

14.
The sal gene encoding Pseudomonas cepacia salicylate hydroxylase was cloned and the sal encoding Pseudomonas putida salicylate hydroxylase was subcloned into plasmid vector pRO2317 to generate recombinant plasmids pTK3 and pTK1, respectively. Both cloned genes were expressed in the host Pseudomonas aeruginosa PAO1. The parental strain can utilize catechol, a product of the salicylate hydroxylase-catalyzed reaction, but not salicylate as the sole carbon source for growth due to a natural deficiency of salicylate hydroxylase. The pTK1- or pTK3-transformed P. aeruginosa PAO1, however, can be grown on salicylate as the sole carbon source and exhibited activities for the cloned salicylate hydroxylase in crude cell lysates. In wild-type P. cepacia as well as in pTK1- or pTK3-transformed P. aeruginosa PAO1, the presence of glucose in addition to salicylate in media resulted in lower efficiencies of sal expression P. cepacia apparently can degrade salicylate via the meta cleavage pathway which, unlike the plasmid-encoded pathway in P. putida, appears to be encoded on chromosome. As revealed by DNA cross hybridizations, the P. cepacia hsd and ht genes showed significant homology with the corresponding plasmid-borne genes of P. putida but the P. cepacia sal was not homologous to the P. putida sal. Furthermore, polyclonal antibodies developed against purified P. cepacia salicylate hydroxylase inactivated the cloned P. cepacia salicylate hydroxylase but not the cloned P. putida salicylate hydroxylase in P. aeruginosa PAO1. It appears that P. cepacia and P. putida salicylate hydroxylases, being structurally distinct, were probably derived through convergent evolution.  相似文献   

15.
16.
Abstract Genes responsible for the utilization of benzoate, anthranilate or catechol ( ben, ant, cat ) of Pseudomonas aeruginosa PAO were mapped precisely using a cosmid clone carrying all these genes. Genes were localized either by subcloning and complementation or by Tn 5 mutagenesis and mapping of the Tn 5 insertion. To achieve this, a novel Tn 5 mutagenesis procedure was developed by constructing a Tn 5 insertion derivative of the Escherichia coli strain S17-1. Preliminary mapping of the ben cat genes of P. putida PPN was accomplished by complementation using a PPN cosmid bank. Sequence homology was demonstrated by Southern hybridization between the ben regions of both P. aeruginosa and P. putida , implying an evolutionary relationship of this chromosomal region of these two pseudomonads.  相似文献   

17.
A cluster of genes essential for degradation of proline to glutamate (put) is located between the pyrC and pyrD loci at min 22 of the Salmonella chromosome. A series of 25 deletion mutants of this region have been isolated and used to construct a fine-structure map of the put genes. The map includes mutations affecting the proline degradative activities, proline oxidase and pyrroline-5-carboxylic dehydrogenase. Also included are mutations affecting the major proline permease and a regulatory mutation that affects both enzyme and permease production. The two enzymatic activities appear to be encoded by a single gene (putA). The regulatory mutation maps between the putA gene and the proline permease gene (putP).  相似文献   

18.
19.
20.
We have previously described two Pseudomonas aeruginosa genes, ptxR, which enhances toxA and pvc (the pyoverdine chromophore operon) expression, and ptxS, the first gene of the kgu operon for the utilization of 2-ketogluconate by P. aeruginosa. ptxS interferes with the effect of ptxR on toxA expression. In this study, we have utilized DNA hybridization experiments to determine the presence of ptxR and ptxS homologous sequences in several gram-negative bacteria. ptxR homologous sequences were detected in P. aeruginosa strains only, while ptxS homologous sequences were detected in P. aeruginosa, Pseudomonas putida, and Pseudomonas fluorescens. Using Northern blot hybridization experiments and a ptxS-lacZ fusion plasmid, we have shown that P. aeruginosa ptxR and ptxS are expressed in P. putida and P. fluorescens. Additional Northern blot hybridization experiments confirmed that ptxS is transcribed in P. putida and P. fluorescens strains that carried no plasmid. The presence of a PtxS homologue in these strains was examined by DNA-gel shift experiments. Specific gel shift bands were detected when the lysates of P. aeruginosa, P. putida, and P. fluorescens were incubated with the ptxS operator site as probe. kgu-hybridizing sequences were detected in P. putida and P. fluorescens. These results suggest that (i) ptxR is present in P. aeruginosa, while ptxS is present in P. aeruginosa, P. putida, and P. fluorescens; (ii) both ptxR and ptxS are expressed in P. putida and P fluorescens; and (iii) a PtxS homologue may exist in P. putida and P. fluorescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号