首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We hereby report studies that suggest a role for serum exosomes in the anchorage-independent growth (AIG) of tumor cells. In AIG assays, fetal bovine serum is one of the critical ingredients. We therefore purified exosomes from fetal bovine serum and examined their potential to promote growth of breast carcinoma cells in soft agar and Matrigel after reconstituting them into growth medium (EEM). In all the assays, viable colonies were formed only in the presence of exosomes. Some of the exosomal proteins we identified, have been documented by others and could be considered exosomal markers. Labeled purified exosomes were up-taken by the tumor cells, a process that could be competed out with excess unlabeled vesicles. Our data also suggested that once endocytosed by a cell, the exosomes could be recycled back to the conditioned medium from where they can be up-taken by other cells. We also demonstrated that low concentrations of exosomes activate MAP kinases, suggesting a mechanism by which they maintain the growth of the tumor cells in soft agar. Taken together, our data demonstrate that serum exosomes form a growth promoting platform for AIG of tumor cells and may open a new vista into cancer cell growth in vivo.  相似文献   

3.
A recent study has discovered that mesenchymal stem cells (MSCs) are recruited into tumors and MSC-derived exosomes in a novel mechanism of cell-to-cell communication in human cancers. Here, in this study, we explore the impact of the microRNA-208a (miR-208a)-enriched exosomes derived from bone marrow-derived mesenchymal stem cells (BMSCs) on osteosarcoma cells. Human osteosarcoma cells MG-63 and Saos-2 were exposed to BMSCs-derived exosomes treated with either miR-208a mimic or inhibitor. The MTT assay, transwell migration assay, and soft agar colony formation assay were used to evaluate the viability, migration, and clonogenicity of osteosarcoma cells. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between miR-208a and PDCD4. Western blot assay was used to detect the expression of PDCD4 and related proteins in the ERK1/2 pathway in osteosarcoma cells. BMSCs communicated with osteosarcoma cells via exosomes. Ectopic expression of miR-208a was shown to increase the viability, migration, and clonogenicity of osteosarcoma cells. Analysis of the exosomal content identified miR-208a as a mediator of the exosomal effects on osteosarcoma cells in part via downregulation of PDCD4 and activating the ERK1/2 pathway. In summary, our study illuminates that BMSC-derived exosomal miR-208a enhances the progression of osteosarcoma.  相似文献   

4.
A manner in which cells can communicate with each other is via secreted nanoparticles termed exosomes. These vesicles contain lipids, nucleic acids, and proteins, and are said to reflect the cell‐of‐origin. However, for the exosomal protein content, there is limited evidence in the literature to verify this statement. Here, proteomic assessment combined with pathway‐enrichment analysis is used to demonstrate that the protein cargo of exosomes reflects the epithelial/mesenchymal phenotype of secreting breast cancer cells. Given that epithelial‐mesenchymal plasticity is known to implicate various stages of cancer progression, the results suggest that breast cancer subtypes with distinct epithelial and mesenchymal phenotypes may be distinguished by directly assessing the protein content of exosomes. Additionally, the work is a substantial step toward verifying the statement that cell‐derived exosomes reflect the phenotype of the cells‐of‐origin.  相似文献   

5.
Studies have shown that exosomes can mediate the chemoresistance of drug-resistant cells by transmitting circular RNAs (circRNAs). However, the role of exosome-derived hsa_circ_103801 (exosomal hsa_circ_103801) in osteosarcoma (OS) remains unclear. The level of hsa_circ_103801 was upregulated in the serum exosomes from patients with OS, and OS patients with high hsa_circRNA_103801 expression had a shorter survival time relative to patients with low hsa_circ_103801 expression. The expression of hsa_circ_103801 was upregulated in cisplatin-resistant MG63 (MG63/CDDP) cells compared with that in MG63 cells. In addition, hsa_circ_103801 was highly enriched in exosomes derived from CDDP-resistant OS cells and could be delivered to MG63 and U2OS cells through exosomes. Exosomes derived from CDDP-resistant cells were shown to reduce the sensitivity of MG63 and U2OS cells to CDDP, inhibit apoptosis, and increase the expression of multidrug resistance-associated protein 1 and P-glycoprotein. Moreover, exosomal hsa_circ_103801 could strengthen the promotive effect of exosomes on the chemoresistance of MG63 and U2OS cells to CDDP. Hence, serum exosomal hsa_circ_103801 may serve as an effective prognostic biomarker for OS, and exosomal hsa_circ_103801 could be a potential target for overcoming OS chemoresistance.  相似文献   

6.
Exosomes are important mediators in cell‐to‐cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma‐specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro‐migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells’ aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.  相似文献   

7.
Exosomes are carriers of intercellular information that regulate the tumor microenvironment, and they have an essential role in drug resistance through various mechanisms such as transporting RNA molecules and proteins. Nevertheless, their effects on gemcitabine resistance in triple-negative breast cancer (TNBC) are unclear. In the present study, we examined the effects of exosomes on TNBC cell viability, colony formation, apoptosis, and annexin A6 (ANXA6)/EGFR expression. We addressed their roles in gemcitabine resistance and the underlying mechanism. Our results revealed that exosomes derived from resistant cancer cells improved cell viability and colony formation and inhibited apoptosis in sensitive cancer cells. The underlying mechanism included the transfer of exosomal ANXA6 from resistant cancer cells to sensitive cancer cells. Isobaric peptide labeling–liquid chromatography–tandem mass spectrometry and western blotting revealed that ANXA6 was upregulated in resistant cancer cells and their derived exosomes. Sensitive cancer cells exhibited resistance with increased viability and colony formation and decreased apoptosis when ANXA6 was stably overexpressed. On the contrary, knockdown ANXA6 restored the sensitivity of cells to gemcitabine. Co-immunoprecipitation expression and GST pulldown assay demonstrated that exosomal ANXA6 and EGFR could interact with each other and exosomal ANXA6 was associated with the suppression of EGFR ubiquitination and downregulation. While adding lapatinib reversed gemcitabine resistance induced by exosomal ANXA6. Moreover, ANXA6 and EGFR protein expression was correlated in TNBC tissues, and exosomal ANXA6 levels at baseline were lower in patients with highly sensitive TNBC than those with resistant TNBC when treated with first-line gemcitabine-based chemotherapy. In conclusion, resistant cancer cell-derived exosomes induced gemcitabine resistance via exosomal ANXA6, which was associated with the inhibition of EGFR ubiquitination and degradation. Exosomal ANXA6 levels in the serum of patients with TNBC might be predictive of the response to gemcitabine-based chemotherapy.Subject terms: Breast cancer, Predictive markers  相似文献   

8.
Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.  相似文献   

9.
Microvesicles were isolated from blood plasma and total blood of healthy females and breast cancer patients by filtration and ultracentrifugation. According to flow cytometry, different subpopulations of exosomes were represented in blood of healthy donors and cancer patients at different levels with median fluorescence intensity (MFI) values in both groups arranged in the following order: CD24/СD9 > СD9/СD81 > CD9/CD63 = CD24/CD63. Concentration of exosomes in blood plasma of healthy females estimated by nanoparticle tracking analysis (NTA) did not exceed (3.71 ± 1.15) × 107 particles/mL of blood and did not differ from that in plasma of breast cancer patients, which averaged (3.99 ± 1.03) × 107 particles/mL of blood. Concentration of total exosomes in blood (including exosomes from plasma and blood cell surface-bound exosomes) did not depend on the presence/absence of a tumor; the values were (7.66 ± 0.7) × 107 particles/mL of healthy blood and (9.4 ± 1.24) × 107 particles/mL of blood from cancer patients. Comparative analysis of exosomes using 2-D electrophoresis with subsequent analysis of 2-D proteomic maps revealed proteins missing in blood or differentially expressed in healthy females and breast cancer women. The data presented provide the possibility for identification of exosomal proteomic markers and isolation of tumor-specific exosomes, which contributes to the development of breast cancer diagnostics.  相似文献   

10.
BACKGROUND: The analysis of exosomes in blood obtained from the tumor-draining mesenteric vein (MV) can identify tumor biomarkers before they reach target organs and form the premetastatic niche where circulating tumor cells can anchor. Our group has recently shown that microRNAs in plasma from the MV—but not the peripheral vein (PV)—have been related to liver metastases in colon cancer (CC) patients. Here we examine the exosomal protein cargo in plasma from the MV and paired PV in 31 CC patients. PATIENTS AND METHODS: The study included patients who were initially diagnosed with stage I-III CC and 10 healthy controls. Exosomes from the MV and PV of all patients and controls were isolated by ultracentrifugation and confirmed by cryogenic transmission electron microscopy. High-throughput proteomic analysis by mass spectrometry was used to identify expression levels of exosomal proteins. Findings were confirmed by Western blot. RESULTS: Exosomal ECM1 protein was more highly expressed in patients than in controls and was 13.55 times higher in MV from relapsed than relapse-free patients. High exosomal ECM1 expression was associated with liver metastases. Patients with high exosomal ECM1 expression in MV—but not PV—plasma had shorter time to relapse than those with low ECM1 expression (P = .04). CONCLUSION: High levels of exosomal ECM1 protein can identify CC patients with a higher risk of relapse. The analysis of exosomes isolated from the tumor-draining MV is a promising method for the identification of biomarkers before they reach the target organ.  相似文献   

11.
Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin‐1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non–small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin‐1 and flotillin‐2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin‐1 as well as its EV‐to‐cellular ratio vary drastically depending on cell type.  相似文献   

12.
Ovarian cancer (OC) is a lethal disease diagnosed at advanced stages due to the lack of specific biomarkers. Tyrosine receptor kinase B (TrkB), which has recently been found to be related to OC progression, represents a promising potential biomarker for OC diagnosis and prognosis. The discovery of circulating exosomes as biomarkers for various diseases led us to explore exosomal TrkB in OC. Our previous study proved that the expression of TrkB was elevated in OC tissues. In this study, we focused on the detection of exosomal TrkB in OC. Exosomes were first gathered from three different OC cell lines’ conditioned medium, serum samples of patients with OC as well as xenograft mice serum by serial centrifugation method. Then, we identified exosomes by transmission electron microscopy, NanoSight analysis, and expression of typical exosomal protein markers. The existence of TrkB in exosomes was measured by Western blot analysis, and the expression was detected by enzyme-linked immunosorbent assay. In this study, we demonstrated that exosomes could derive from OC cell lines, serum from OC xenograft nude mice, and clinical patients. Our study shows that serum exosomal TrkB may be considered a minimally invasive biomarker for OC.  相似文献   

13.
《Tsitologiia》2012,54(5):430-438
Exosomes are 20-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro and in vivo. Since exosomes contain both RNA (mRNA and microRNA) and proteins, which can be transferred to another cell, and be functional in that new environment, these vesicles may be involved in the communication between cells. The secretion of exosomes by tumor cells and their implication in the transport and propagation of infectious cargo suggest their participation in pathological situations. Our purpose here is to describe methods for the production, purification, and proteomic characterization of exosomes derived from human cancer cells in vitro. Based on exosomes' unique lipidic composition, we have developed the new approach to increase production of exosomes by cells in vitro. Secondly, we have developed quality control by laser correlation spectroscopy for exosomal assays based on the amount of MHC class I and CD63 molecules on their surface. At last, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was used after 2D electrophoresis for the proteomic analysis of exosomes derived from cancer cell lines. This study describes the protein composition of brain tumor cell-derived exosomes in more detail.  相似文献   

14.
Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa.  相似文献   

15.
Emerging evidence indicates that osteoclasts from osteosarcoma patients have higher tartrate resistant acid phosphatase (TRAP) activity. Exosomes are important mediators of the cell-to-cell communication. However, whether osteosarcoma cell–derived exosomes mediate the osteoclastogenesis of bone marrow-derived monocytes (BMDMs) and its mechanisms are largely unknown. In this research, we validated the communication between osteosarcoma cells and BMDMs. Here, we found that osteosarcoma cell-derived exosomes can be transfered to BMDMs to promote osteoclast differentiation. The miR-501-3p is highly expressed in exosomes derived from osteosarcoma and could be transferred to BMDMs through the exosomes. Moreover, osteosarcoma-derived exosomal miR-501-3p mediate its role in promoting osteoclast differentiation and aggravates bone loss in vitro and in vivo. Mechanistically, osteosarcoma cell-derived exosomal miR-501-3p could promote osteoclast differentiation via PTEN/PI3K/Akt signaling pathway. Collectively, our results suggest that osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss. Therefore, our study reveals a novel mechanism of osteoclastogenesis in osteosarcoma patients and provides a novel target for diagnosis or treatment.  相似文献   

16.
Pancreatic cancer (PC) is one of the most lethal cancers known worldwide, and its prognosis is poor in most patients. Exosomes are nanosized extracellular vesicles, which are released from various cell types. They are involved in cellular communication. The diagnosis and treatment of PC were improved substantially with exosomes. In this study, we isolated PC-derived exosomes and investigated their proteomic profile. Then, we conducted bioinformatic analysis on proteomic data. Differential ultracentrifugation was performed to isolate exosomes from human serum samples and four PC cell lines. Transmission electron microscopy and Western blot analysis were used to characterize the isolated exosomes. Liquid chromatography coupled with tandem mass spectrometry was conducted to identify the proteome of serum exosomes. Proteomic analysis demonstrated that all the serum exosomes were derived from three cohorts of human subjects; these serum exosomes contained a total of 655 proteins, out of which 315 proteins overlapped with ExoCarta database. Gene oncology and kyoto encyclopedia of genes and genomes analyses provided the functional annotation of the proteome. Interestingly, 18 or 14 proteins were upregulated and 11 or 14 proteins were downregulated in serum exosomes derived from patients with PC as compared with in serum exosomes derived from healthy volunteers or from pancreatitis patients respectively. Annexin A11, a calcium-dependent phospholipid-binding protein, was expressed in a PC cell line (CFPAC-1)-derived exosomes and in tumor tissues of patients with PC, respectively. Our data provided a basic foundation for further studies on the protein composition of PC-derived exosomes and its involvement in PC biology.  相似文献   

17.
Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells’ proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment.  相似文献   

18.
Issues associated with upscaling exosome production for therapeutic use may be overcome through utilizing artificial exosomes. Cell‐derived mimetic nanovesicles (M‐NVs) are a potentially promising alternative to exosomes for clinical applicability, demonstrating higher yield without incumbent production and isolation issues. Although several studies have shown that M‐NVs have similar morphology, size and therapeutic potential compared to exosomes, comprehensive characterization and to what extent M‐NVs components mimic exosomes remain elusive. M‐NVs were generated through the extrusion of cells and proteomic profiling demonstrated an enrichment of proteins associated with membrane and cytosolic components. The proteomic data herein reveal a subset of proteins that are highly abundant in M‐NVs in comparison to exosomes. M‐NVs contain proteins that largely represent the parental cell proteome, whereas the profile of exosomal proteins highlight their endosomally derived origin. This advantage of M‐NVs alleviates the necessity of endosomal sorting of endogenous therapeutic proteins or RNA into exosomes. This study also highlights differences in protein post‐translational modifications among M‐NVs, as distinct from exosomes. Overall this study provides key insights into defining the proteome composition of M‐NVs as a distinct from exosomes, and the potential advantage of M‐NVs as an alternative nanocarrier when spontaneous endosomal sorting of therapeutics are limited.  相似文献   

19.
Hypoxia plays an important role during the evolution of cancer cells and their microenvironment. Emerging evidence suggests communication between cancer cells and their microenvironment occurs via exosomes. This study aimed to clarify whether hypoxia affects angiogenic function through exosomes secreted from leukemia cells. We used the human leukemia cell line K562 for exosome-generating cells and human umbilical vein endothelial cells (HUVECs) for exosome target cells. Exosomes derived from K562 cells cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h were isolated and quantitated by nanoparticle tracking analysis. These exosomes were then cocultured with HUVECs to evaluate angiogenic activity. The exosomes secreted from K562 cells in hypoxic conditions significantly enhanced tube formation by HUVECs compared with exosomes produced in normoxic conditions. Using a TaqMan low-density miRNA array, we found a subset of miRNAs, including miR-210, were significantly increased in exosomes secreted from hypoxic K562 cells. We demonstrated that cancer cells and their exosomes have altered miRNA profiles under hypoxic conditions. Although exosomes contain various molecular constituents such as proteins and mRNAs, altered exosomal compartments under hypoxic conditions, including miR-210, affected the behavior of endothelial cells. Our results suggest that exosomal miRNA derived from cancer cells under hypoxic conditions may partly affect angiogenic activity in endothelial cells.  相似文献   

20.
Exosomes are small microvesicles released into the cellular environment by different types of cells. These vesicles have been found in the blood serum and in other extracellular fluids of body. There are a number of different proteins, mRNA and microRNA, in these exosomes. Exosomes take part in cellular communication, excretion of proteins, immune response, and are also involved in development of some neurodegenerative diseases and cancer. The mechanism through which they get in and out of cells is not clear. To address this issue, we have generated a stable HeLa cell line expressing exosomal marker CD63 fused with a tagRFP and HTBH tag. These and other cells harboring the CD63-tagRFP-HTBH structure constitute a valuable tool that should allow real-time observations of exosomal transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号