首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
All‐female sperm‐dependent species are particular asexual organisms that must coexist with a closely related sexual host for reproduction. However, demographic advantages of asexual over sexual species that have to produce male individuals could lead both to extinction. The unresolved question of their coexistence still challenges and fascinates evolutionary biologists. As an alternative hypothesis, we propose those asexual organisms are afflicted by a demographic cost analogous to the production of males to prevent exclusion of the host. Previously proposed hypotheses stated that asexual individuals relied on a lower fecundity than sexual females to cope with demographic advantage. In contrast, we propose that both sexual and asexual species display the same number of offspring, but half of asexual individuals imitate the cost of sex by occupying ecological niches but producing no offspring. Simulations of population growth in closed systems under different demographic scenarios revealed that only the presence of nonreproductive individuals in asexual females can result in long‐term coexistence. This hypothesis is supported by the fact that half of the females in some sperm‐dependent organisms did not reproduce clonally.  相似文献   

2.
Sperm‐dependent asexual species must coexist with a sexual species (i.e. a sperm source) to reproduce. The maintenance of this coexistence, and hence the persistence of sperm‐dependent asexual species, may depend on ecological niche separation or preference by males for conspecific (i.e. sexual) mates. We first modified an analytical model to consider both of these mechanisms acting simultaneously on the coexistence of the two species. Our model indicates that a small amount of niche separation between parental species and hybrids can facilitate coexistence by weakening the requirement for male mate preference. We also estimated niche separation empirically in the Chrosomus (formerly Phoxinus) sexual‐asexual system based on diet overlap between sperm‐dependent asexuals and their two sexual host species. Diet overlap between the sexual species was not significant in either lake, whereas the sperm‐dependent asexual had an intermediate niche that overlapped significantly, but somewhat asymmetrically, with both sexual species. These empirical results were then used to parameterize our analytical model to predict the minimum strength of male mate preference required to maintain coexistence in each lake. Some male mate preference is likely required to maintain coexistence in the Chrosomus system, but the minimum required preference depends on the severity of density dependence. Future empirical work on understanding coexistence in sperm‐dependent asexual systems would benefit from taking both niche separation and mate choice into account, and from simultaneous empirical estimates of male mate choice, niche separation, and density dependence.  相似文献   

3.
The twofold cost of sex implies that sexual and asexual reproduction do not coexist easily. Asexual forms tend to outcompete sexuals but may eventually suffer higher extinction rates, creating tension between short- and long-term advantages of different reproductive modes. The 'short-sightedness' of asexual reproduction takes a particularly intriguing form in gynogenetic species complexes, in which an asexual species requires sperm from a related sexual host species to trigger embryogenesis. Asexuals are then predicted to outcompete their host, after which neither species can persist. We examine whether spatial structure can explain continued coexistence of the species complex, and assess the evidence based on data on the Amazon molly (Poecilia formosa). A modification of the Levins metapopulation model creates two regions of good prospects for coexistence, connected by a region of poorer patch occupancy levels. In the first case, mate discrimination and/or niche differentiation keep local extinction rates low, and most patches contain both species; the other possibility resembles host-parasite dynamics where parasites frequently drive the host locally extinct. Several dynamical features are counterintuitive and relate to the parasitic nature of interactions in the species complex: for example, high local extinction rates of the asexual species can be beneficial for its own persistence. This creates a link from the evolution of sexual reproduction to that of prudent predation.  相似文献   

4.
The asexual all-female Japanese crucian carp, Carassius auratus langsdorfii (Teleostei: Cypriniformes), reproduces gynogenetically, relying on the sperm of males of the sexual "host," C. auratus subspp. Theoretically, frequency-dependent mating preference of males to conspecific females can lead to the coexistence of asexual and sexual fish, if all else is equal. Our specific questions are whether males prefer conspecific females over asexual females and whether individuals show dominance hierarchies that potentially cause frequency-dependent mating preference. In an individual choice experiment, a tank was partitioned into three compartments with the middle one for a single male and the two outer ones for a sexual and an asexual female. The males of C. auratus bürgeri demonstrated a significant preference for ovulated conspecific females over ovulated asexual females. In contrast, in a group mating experiment, a single experimental tank included two males, a sexual female, and an asexual female together, and males chased and mated with both asexual and sexual females equally. Male mate preference was weak in group mating, which is typical in natural populations. Males and females of crucian carp showed no apparent agonistic behavior to each other in the group mating experiment. This is different from other gynogenetic complexes with the dominance hierarchy of males showing strong frequency-dependent mating preference (e.g., Poeciliopsis). We conclude that male mate preference is unlikely to be a strong frequency-dependent force maintaining the coexistence of asexual–sexual complexes of Japanese crucian carp. Received in revised form: 5 February 2001 Electronic Publication  相似文献   

5.
Determining whether reproductive isolation evolves through mate choice and/or gametic factors that prevent fertilization or through the post‐zygotic mechanisms of hybrid sterility or inviability is fundamental to understanding speciation. Investigation of the pre‐ and post‐zygotic components of reproductive isolation is facilitated in the pseudoscorpion, Cordylochernes scorpioides, by its indirect method of sperm transfer and viviparous embryonic development. Previous research on this species, in which mate discrimination was assessed in virgin females, suggested that female choice played only a minor role in reproductive isolation between populations from French Guiana and Panamá. Here, in a study of three allopatric populations of C. scorpioides from Panamá, we assessed mating‐stage isolation in both virgin and once‐mated females, and found that female discrimination depends critically on mating status. Virgin females were almost invariably receptive, showing no tendency to discriminate against males from allopatric populations. By contrast, non‐virgin females were significantly more likely to reject foreign males than males from their own population. Male sexual motivation could not account for differences in either female sexual receptivity or male success in sperm transfer. Allopatric and sympatric males did not differ in number of spermatophores deposited as either a female’s first or second mate. Nonetheless, allopatric males achieved significantly lower sperm transfer success not only with choosy, non‐virgin females but also with virgin females. Given the lack of behavioral discrimination by virgin females, female receptivity was not the only factor influencing differences in sperm transfer success. Multivariate analysis of spermatophore morphology suggests that the higher failure rate of matings between allopatric males and virgin females resulted from population differences in sperm packet architecture. Overall, our findings indicate that assessment of discrimination against allopatric males that is limited to virgin females may seriously underestimate the contribution of female mate choice to reproductive isolation between populations.  相似文献   

6.
Understanding why some organisms reproduce by sexual reproduction while others can reproduce asexually remains an important unsolved problem in evolutionary biology. Simple demography suggests that asexuals should outcompete sexually reproducing organisms, because of their higher intrinsic rate of increase. However, the majority of multicellular organisms have sexual reproduction. The widely accepted explanation for this apparent contradiction is that asexual lineages have a higher extinction rate. A number of models have indicated that population size might play a crucial role in the evolution of asexuality. The strength of processes that lead to extinction of asexual species is reduced when population sizes get very large, so that the long‐term advantage of sexual over asexual reproduction may become negligible. Here, we use a comparative approach using scale insects (Coccoidea, Hemiptera) to show that asexuality is indeed more common in species with larger population density and geographic distribution and we also show that asexual species tend to be more polyphagous. We discuss the implication of our findings for previously observed patterns of asexuality in agricultural pests.  相似文献   

7.
In several asexual taxa, reproduction requires mating with related sexual species to stimulate egg development, even though genetic material is not incorporated from the sexuals (gynogenesis). In cases in which gynogens do not invest in male function, they can potentially have a twofold competitive advantage over sexuals because the asexuals avoid the cost of producing males. If unmitigated, however, the competitive success of the asexuals would ultimately lead to their own demise, following the extinction of the sexual species that stimulate egg development. We have studied a model of mate choice among sexual individuals and asexual gynogens, where males of the sexual species preferentially mate with sexual females over gynogenetic females, to determine if such mating preferences can stably maintain both gynogenetic and sexual individuals within a community. Our model shows that stable coexistence of gynogens and their sexual hosts can occur when there is variation among males in the degree of preference for mating with sexual females and when pickier males pay a higher cost of preference.  相似文献   

8.
Although sexual reproduction is ubiquitous throughout nature, the molecular machinery behind it has been repeatedly disrupted during evolution, leading to the emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, little is known about what causes the switch from sexual reproduction to asexuality. Interspecific hybridization is one of the candidate explanations, but the reasons for the apparent association between hybridization and asexuality remain unclear. In this study, we combined cross‐breeding experiments with population genetic and phylogenomic approaches to reveal the history of speciation and asexuality evolution in European spined loaches (Cobitis). Contemporary species readily hybridize in hybrid zones, but produce infertile males and fertile but clonally reproducing females that cannot mediate introgressions. However, our analysis of exome data indicates that intensive gene flow between species has occurred in the past. Crossings among species with various genetic distances showed that, while distantly related species produced asexual females and sterile males, closely related species produce sexually reproducing hybrids of both sexes. Our results suggest that hybridization leads to sexual hybrids at the initial stages of speciation, but as the species diverge further, the gradual accumulation of reproductive incompatibilities between species could distort their gametogenesis towards asexuality. Interestingly, comparative analysis of published data revealed that hybrid asexuality generally evolves at lower genetic divergences than hybrid sterility or inviability. Given that hybrid asexuality effectively restricts gene flow, it may establish a primary reproductive barrier earlier during diversification than other “classical” forms of postzygotic incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation process.  相似文献   

9.
In the parasitoid Venturia canescens Gravenhorst (Hymenoptera: Ichneumonidae), asexual and sexual wasps coexist in the field in the Mediterranean basin, but only the asexual strain is present indoors. The sexual strain dominates outdoors despite the demographic costs associated with the production of males and mate location. The present study tests whether females of the sexual and asexual strains of V. canescens differ in flight characteristics in line with the differences of their preferred habitats and enquires whether these differences might contribute to the persistence of sexually reproducing individuals in the vicinity of asexual counterparts. The results show that sexual female wasps are smaller than their asexual counterparts. The size of wasps has a strong influence on flight parameters, with larger animals generally being better fliers. In wasps of approximately the same size, sexual wasps fly faster than their asexual counterparts under experimental laboratory conditions, in terms of both the average speed over the observation period as well as the longest single flight. Sexual wasps also perform fewer flights to cover the same distance. Sexual wasps have higher wing loading than asexual ones of the same size, which could have contributed to the observed differences in speed between individuals of both reproductive modes. There are no significant differences between the two reproductive modes in the parameters related to the distance traversed or the time spent in flight. This study shows clear differences in the flight behaviour of sexual and asexual V. canescens. Together with previous results, this finding suggests differential adaptations to their preferred habitats. These differences might ease the competition between modes of reproduction through niche and habitat differentiation and might help to explain their coexistence on a geographical scale.  相似文献   

10.
The frozen niche variation hypothesis proposes that asexual clones exploit a fraction of a total resource niche available to the sexual population from which they arise. Differences in niche breadth may allow a period of coexistence between a sexual population and the faster reproducing asexual clones. Here, we model the longer term threat to the persistence of the sexual population from an accumulation of clonal diversity, balanced by the cost to the asexual population resulting from a faster rate of accumulation of deleterious mutations. We use Monte-Carlo simulations to quantify the interaction of niche breadth with accumulating deleterious mutations. These two mechanisms may act synergistically to prevent the extinction of the sexual population, given: (1) sufficient genetic variation, and consequently niche breadth, in the sexual population; (2) a relatively slow rate of accumulation of genetic diversity in the clonal population; (3) synergistic epistasis in the accumulation of deleterious mutations.  相似文献   

11.
In many sexually reproducing species, females are sperm limited and actively mate more than once which can lead to sperm competition between males. However, the costs and benefits of multiple matings may differ for males and females leading to different optimal mating frequencies and consequent sexual conflict. Under these circumstances, male traits that reduce females' re‐mating rates are likely to evolve. However, the same traits can also reduce, directly or indirectly, female survival and/or manipulate female fecundity. Evidence of this sexual conflict is common across several taxa. Here, we examine the evidence for this form of conflict in the free‐living nematodes of the Caenorhabditis genus. Members of this group are extensively used to describe developmental and physiological processes. Despite this, we understand little about the evolution of selfing, maintenance of males and sexual conflict in these species, particularly those with gonochoristic mating strategies. In this study, we demonstrate experimentally sexual conflict in the gonochoristic of C. remanei cultured under laboratory conditions. In our first experiment, we found that female fecundity increased with the number of males present which suggests that females' reproduction may be sperm limited. However, increasing the number of males present also reduced female survival. A second experiment ruled out the alternative explanation of density‐dependent reduction in female survival when more males were present as increasing female density correspondingly did not affect female survival. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 362–369.  相似文献   

12.
If maturation is more costly for females, they may need more distinct environmental cues to induce sexual reproduction than males. We verified this hypothesis by comparing the indirect costs of maturation to males and females of the heterogonic Hydra oligactis, reproducing both asexually and sexually. The laboratory experiments revealed that males mature 2 weeks earlier than the first females at falling temperatures simulating the natural conditions that precede sexual reproduction. The difference between the energy costs of maturation for males versus females has been considered a likely factor responsible for the observed difference in maturation time. Available food supply positively affected the percentage of sexually mature females, indicating that females are more sensitive to food limitation than males. The number of gonads was correlated positively with the size of mature hydra for both males and females. However, males produced twice as many testes as ovaries produced by females. We postulate that females are induced later than males in order to prevent gonadal development after an unseasonable drop in temperature. As sexual reproduction in H. oligactis interferes with asexual budding, under favorable conditions for asexual proliferation unnecessary gonadal development decreases an individual’s fitness through reduction of the number of produced offspring.  相似文献   

13.
Male mate choice is critical for understanding the evolution and maintenance of sexual/asexual mating complexes involving sperm-dependent, gynogenetic species. Amazon mollies (Poecilia formosa) require sperm to trigger embryogenesis, but the males (e.g. Poecilia mexicana) do not contribute genes. Males benefit from mating with Amazon mollies, because such matings make males more attractive to conspecific females, but they might control the cost of such matings by providing less sperm to Amazon mollies. We examined this at the behavioural and sperm levels. P. mexicana males preferred to mate with, and transferred more sperm to conspecific females. However, if males mated with P. formosa, sperm was readily transferred. This underscores the importance of male choice in this system.  相似文献   

14.
The maintenance of sex is still an evolutionary puzzle given its immediate costs. Stably coexisting complexes of asexually and sexually reproducing forms allow to study mechanisms that balance the costs and benefits of both asexual and sexual reproduction. Here, we tested whether coexisting asexual and sexual fish of the genus Poecilia differed in neonate mortality when exposed to environmental stress in the form of fluctuating temperatures and food deprivation. We find that asexual Amazon mollies, Poecilia formosa, are significantly more sensitive to food stress than their sexual relative Poecilia latipinna, but both are equally unaffected by variable temperatures. Differences in the susceptibility to environmental stress may contribute to diminishing the asexuals’ benefits of a higher intrinsic population growth rate and thus mediate stable coexistence of the two reproductive forms.  相似文献   

15.
Why don’t asexual females replace sexual females in most natural populations of eukaryotes? One promising explanation is that parasites could counter the reproductive advantages of asexual reproduction by exerting frequency‐dependent selection against common clones (the Red Queen hypothesis). One apparent limitation of the Red Queen theory, however, is that parasites would seem to be required by theory to be highly virulent. In the present study, I present a population‐dynamic view of competition between sexual females and asexual females that interact with co‐evolving parasites. The results show that asexual populations have higher carrying capacities, and more unstable population dynamics, than sexual populations. The results also suggest that the spread of a clone into a sexual population could increase the effective parasite virulence as population density increases. This combination of parasite‐mediated frequency‐dependent selection, and density‐dependent virulence, could lead to the coexistence of sexual and asexual reproductive strategies and the long‐term persistence of sex.  相似文献   

16.
When making mating decisions, individuals may rely on multiple cues from either the same or multiple sensory modalities. Although the use of visual cues in sexual selection is well studied, fewer studies have examined the role of chemical cues in mate choice. In addition, few studies have examined how visual and/or chemical cues affect male mating decisions. Male mate choice is important in systems where males must avoid mating with heterospecific females, as is found in a mating complex of Poecilia. Male sailfin mollies, Poecilia latipinna, are sexually parasitized by gynogenetic Amazon mollies, P. formosa. Little is known about the mechanism by which male sailfin mollies base their mating decisions. Here we tested the hypothesis that male sailfin mollies from an allopatric and a sympatric population with Amazon mollies use multiple cues to distinguish between conspecific and heterospecific females. We found that male sailfin mollies recognized the chemical cues of conspecific females, but we found no support for the hypothesis that chemical cues are by themselves sufficient for species discrimination. Lack of discrimination based on chemical cues alone may be due to the close evolutionary history between P. latipinna and P. formosa. Males from populations sympatric with Amazon mollies did not differentially associate with females of either of the two species when given access to both visual and chemical cues of the females, yet males from the allopatric population did associate more with conspecific females than with heterospecific females in the presence of both chemical and visual cues. The lack of discrimination by males from the sympatric population between conspecific and heterospecific females based on both chemical and visual cues suggests that these males require more complex combinations of cues to distinguish species, possibly due to the close relatedness of these species.  相似文献   

17.
The effect of sexual selection on species persistence remains unclear. The cost of bearing ornaments or armaments might increase extinction risk, but sexual selection can also enhance the spread of beneficial alleles and increase the removal of deleterious alleles, potentially reducing extinction risk. Here we investigate the effect of sexual selection on species persistence in a community of 34 species of dung beetles across a gradient of environmental disturbance ranging from old growth forest to oil palm plantation. Horns are sexually selected traits used in contests between males, and we find that both horn presence and relative size are strongly positively associated with species persistence and abundance in altered habitats. Testes mass, an indicator of post‐copulatory selection, is, however, negatively linked with the abundance of species within the most disturbed habitats. This study represents the first evidence from a field system of a population‐level benefit from pre‐copulatory sexual selection.  相似文献   

18.
Unisexual species like the gynogenetic Amazon molly, Poecilia formosa, enjoy a twofold advantage over sexual species, because they do not produce males. Therefore, unisexuals should be able to outcompete and consequently, replace sexual species. For sperm-dependent (gynogenetic) unisexuals this creates a paradox: they cannot replace their sexual hosts without eradicating themselves. Thus, mechanisms must be in place to stabilize such mating systems. We assessed juvenile survivorship between asexual P. formosa and sexual Poecilia latipinna as a possible factor allowing for persistence and coexistence between the two sympatric species. Offspring of gynogenetic Amazon mollies did not differ significantly in survivorship compared to their sexual host, the Sailfin molly, P. latipinna. The presence of an adult female significantly reduced survival in both species, suggesting that filial cannibalisms operates in this system, but does not appear to play a role in stabilizing mixed sexual/asexual populations. Clark Hubbs, who spent 59 years at the University of Texas and was widely regarded as one of the state’s foremost researchers in the field of ichthyology, the study of fish, passed away February 3rd of 2008 after a long battle with colorectal cancer. He was 86.  相似文献   

19.
The green hydra, Hydra viridissima, has three sexes: hermaphrodite, male, and female. I investigated the reproductive strategies of the green hydra and the relationship between asexual budding and sexual reproduction. The proportion of mature individuals in the asexually reproducing population increased with increasing temperature. Sexual reproduction did not interrupt asexual budding in hermaphrodites or males; sexual reproduction did interrupt asexual budding in females. Sexual reproduction also resulted in exponential population growth during the reproductive season. The number of asexual buds on each parental individual was positively correlated with the parental individual size in asexual individuals and in males. The same positive correlation was found between the number of testicles and the size of males. These correlations reflect a common tendency in asexual and sexual reproduction: larger parental individuals have a greater number of propagules or gametes. No correlation was found between size and buds or size and gonads in hermaphrodites; hermaphrodites had at most one asexual bud and were significantly larger than males, females, and asexual individuals. The larger size of hermaphrodites supports the hypothesis that producing both female and male gonads is more energetically costly than producing only one type of gamete (gonochorism).  相似文献   

20.
SUMMARY. 1 Genetic (electrophoretic) and sex ratio data were used to assess the contributions of sexual and asexual reproduction to recruitment to populations of the freshwater ostracod Candonocypris novaezelandiae in temporary and permanent water bodies of varying size.
2. Two distinct types of population structure were found. Populations from eight permanent ponds, a reservoir and a temporary pond, apparently comprised only females and were dominated by a few highly replicated genotypes. Significant departures from Hardy-Weinberg equilibria were observed for at least one locus in all populations, and multi-locus genotypic diversity ranged between 16% and 48% of that expected in a population with the same underlying gene frequencies reproducing solely by sexual means. These results were consistent with the predicted consequences of predominantly asexually derived recruitment.
3. In contrast, sexual reproduction was probably most important in a population inhabiting a large temporary swamp. This population displayed 79% of the genotypic diversity expected for a sexually reproducing population, and contained both males and females.
4. Most theoretical models predict that sexually reproducing individuals should have a selective advantage in unstable environments. The results of this study do not provide a perfect association of sexually derived recruitment with unstable habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号