首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38 % more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2 years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11–16 % less lignin, 33–40 % lower S/G (syringyl-to-guaiacyl) ratios, and 15–42 % higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. These results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.  相似文献   

2.
Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts of harvest time and switchgrass cultivar had on sugar release variables determined through enzymatic hydrolysis. Previously, we reported that delaying harvest of switchgrass until after frost and until after winter resulted in decreased yields of switchgrass but it reduced the amount of ash and nutrients in the biomass. The current study used near-infrared reflectance spectroscopy (NIRS) to broaden an existing set of calibration equations designed to predict composition and sugar release variables of switchgrass. These updated calibrations were then applied to the full set of samples from a multi-year and multi-location switchgrass harvest-management study. Composition and processor sugar yields were significantly affected by location, year, cultivar, and harvest time, of which the time of harvest was the most important. Delaying the time of harvest until after frost or post-winter increased the concentration of structural carbohydrates from 500 to over 570 g kg?1 in the biomass and lignin content from 160 to over 200 g kg?1. Conversely, delaying harvest time lowered the amounts of ash and soluble sugars. The later harvest times also yielded more sugars following processing with yields increasing over 20% from the first harvest. Increased sugar yields are attributable to both increased concentration of sugars in the biomass upon harvest and reduced biomass recalcitrance. Based upon processed sugar yields, it is estimated that a biorefinery producing 76 million liters of ethanol per year would require 229–373 km2 of land cultivated with switchgrass.  相似文献   

3.
Carbohydrate and lignin composition of feedstock materials are major factors in determining their bioenergy potential. This study was conducted to quantify dry biomass yield and the carbohydrate and lignin composition of six potential biofuel grasses (elephantgrass, energycane, sweetcane, giant reed, giant miscanthus, and sugarcane) across three sites in Florida for plant (2009) and first ratoon (2010) crops. Dry biomass yields ranged from about 30 to 50 Mg ha?1 and were generally greatest for elephantgrass, energycane, sweetcane, and sugarcane. Accordingly, total plant carbohydrate yields (20 to 25 Mg ha?1) were comparable among sugarcane, energycane, sweetcane, and elephantgrass, but were generally less for giant reed and even less for giant miscanthus. However, the contribution of total extractable carbohydrates and total fiber carbohydrates to total plant carbohydrate yields differed among species. Sugarcane had the highest concentrations of extractable carbohydrates (219 to 356 mg g?1), followed by energycane, then sweetcane, elephantgrass, and giant reed, with giant miscanthus having the lowest. Energycane and elephantgrass tended to have significantly more fiber glucose, and elephantgrass less xylose, than other species. Variability in total lignin concentrations on a fiber basis was relatively modest (250 to 285 mg g?1) across species, but was generally highest in sweetcane and giant reed. Overall, elephantgrass and energycane were prime regional candidates for cellulosic conversion using fermentation processes due to high yields and favorable fiber characteristics, although energycane tended to have higher extractable carbohydrates.  相似文献   

4.
Morphogenic cultures of Gloriosa superba were initiated on Murashige and Skoog’s medium fortified with 2 mg L?1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg L?1 naphthaleneacetic acid (NAA), 4% sucrose and 0.1% activated charcoal. To enhance the content of the alkaloid colchicine, morphogenic cultures were treated with different concentrations of abiotic elicitors like signalling compounds, metals, biotic elicitors, precursors and a combination of elicitors. Signalling molecules like acetyl salicylic acid (ASA) and sodium nitroprusside improved the production of colchicine. Abiotic elicitors have markedly (p?≤?0.05 or ≤?0.01) enhanced the colchicine content either at lower or higher concentrations. Among the metals, the highest amount of 11.67 mg of colchicine g?1 dry wt was noticed at 60 mM rubidium chloride, followed by 60 mM NaCl (11.18 mg g?1). Contrarily, in the presence of biotic elicitors such as Fusarium oxysporum, Alternaria solani, and Saccharomyces cerevisiae, colchicine content ranged only between 2 and 5.32 mg g?1, but Bacillus subtilis repressed it. Among the aromatic amino acids, phenylalanine at 500 mg L?1 influenced the highest accumulation of 19.48 mg g?1 dry tissue, followed by tryptophan (12.47 mg g?1), and tyrosine (9.87 mg g?1), a direct precursor of colchicine biosynthesis, while intact tubers and leaves contained 4.65 and 4.16 mg of colchicine g?1 dry tissue respectively. A combination of 10 µM AlCl3 and 50 µM salicylic acid (SA) registered 17.34 mg g?1 followed by 16.24 mg g?1 tissue in presence of 1 µM HgCl2 and 50 µM SA. The results suggest that the elicitor-stimulated colchicine accumulation was a stress response and can be exploited further for commercial production.  相似文献   

5.
The extent of seasonal variation in the nutrient profile of Arthrospira biomass harvested from Lake Chitu was investigated to evaluate the variability of the quality of the product over a period of a year. Protein content varied from 47.9 to 55.7% for wet season biomass samples and from 39.2 to 40.8% for dry season samples. Dry season samples were characterized by relatively higher carbohydrate values (38.0–41.3%). Higher proportion of amino acids and unsaturated fatty acids were recorded for biomass harvested in wet season. Similarly, higher contents of phytonutrients (pigments) were recorded for wet season biomass samples: chlorophyll a (8.2–10.3 mg g?1), phycobiliproteins (104.1–120.7 mg g?1), total carotenoids (3.17–4.31 mg g?1), and β-carotene (1.24–1.61 mg g?1). The contents of Na and K were higher for a dry season biomass whereas other major (Ca, P, Mg) and trace (Mn, Fe, Cu, Zn, Se) minerals were found relatively in higher quantities in a wet season biomass. The nutritional composition of Arthrospira from Lake Chitu was found to be relatively comparable to that found in commercial Arthrospira products in the market. The significance of the findings is discussed in relation to potential sustainable production of Arthrospira biomass from this lake.  相似文献   

6.
This study aims to determine the low temperature resistance of dormant buds at nodes with or without lateral shoots of Karaerik grape cultivar, and explain the relationship between the resistance and biochemical parameters in this grape cultivar. In this study, the mean values of high temperature exotherms (HTEs), low temperature exotherms (LTEs), water, reducing sugar, total soluble protein contents and antioxidant enzyme activities of dormant buds taken from nodes with or without lateral shoots were determined. The experiment has been found that buds in nodes with lateral shoots showed HTE and LTE at higher temperatures (HTE average ?6.7 °C and LTE average ?8.3 °C) than buds (HTE average ?7.9 °C and LTE average ?11.5 °C) in nodes without lateral shoots; therefore, buds in nodes with lateral shoots had less tolerance to low temperature. Additionally, lower sugar (average 41.05 mg g?1), protein (average 1.61 mg g?1), superoxide dismutase (average 425.27 EU g?1 tissue), peroxidase (average 2516.1 EU g?1 tissue) and polyphenol oxidase (average 7283.1 EU g?1 tissue) were determined for buds taken from nodes with lateral shoots. Due to the fact that dormant buds taken from nodes with lateral shoots decreased the resistance to low temperatures, this research suggests that these lateral shoots should be excised with the summer pruning at the regions, where low temperatures caused the damages.  相似文献   

7.
Switchgrass (Panicum virgatum L.), a warm-season perennial grass, is an important bioenergy crop candidate because it produces high biomass yields on marginal lands and on reclaimed surface mined sites. In companion studies, dry matter (DM) yields for Cave-in-Rock, Shawnee, and Carthage cultivars varied from 4.2 to 13.0 Mg ha?1averaged over 6 years at the reclaimed Hampshire site, and fertilization increased yields of Cave-in-Rock at Black Castle and Coal Mac sites from 0.3 to 2 Mg ha?1 during the first 3 years. The objective of these experiments was to compare the impacts of cultivar and soil amendments on biomass quality and theoretical ethanol production of switchgrass grown on surface mines with differing soil characteristics. Biomass quality was determined for fiber, ash, lignin, digestibility, and carbohydrate contents via near-infrared reflectance spectroscopy, and carbohydrates were used to calculate theoretical ethanol yield (TEY; L Mg?1) and multiplied by biomass yield to calculate theoretical ethanol production (TEP; L ha?1). Cultivars at the Hampshire site did not differ in TEY and ranged from 426 to 457 L Mg?1. Theoretical ethanol production from Cave-in-Rock at Hampshire was 7350 L ha?1, which was higher than other cultivars because of its greater biomass production. This TEP was higher than in other studies which predicted 4000 to 5000 L ha?1. At the Black Castle and Coal Mac sites, fertilizer applications slightly affected biomass quality of switchgrass and TEY, but provided greater TEP as a function of increased yield. Similar to other findings, total switchgrass biomass production has more impact than compositional differences on TEP, so maximizing biomass production is critical for maximizing potential biofuel production. With appropriate soil substrates, fertilization, planning, and management, large areas of reclaimed surface mines can be converted to switchgrass stands to produce high biomass quality and yields to support a bioethanol industry.  相似文献   

8.
Eryngium planum L. cell and organ cultures were maintained on Murashige and Skoog media (MS), supplemented with exogenous hormones of different types and various concentrations for high biomass growth. The callus and cell suspension cultures were treated with increased sucrose concentration and/or elicited by methyl jasmonate for the enhancement of selected phenolic acids accumulation. Three phenolic acids, rosmarinic acid (RA), chlorogenic acid (CGA) and caffeic acid (CA), were detected by HPLC-DAD in those cultures. The sum of their content in the dry material was found to be higher in the shoot culture (3.95 mg g?1), root culture (7.05 mg g?1), callus (6.20 mg g?1) and cell suspension (2.04 mg g?1) than in the leaves (1.87 mg g?1) and roots (0.76 mg g?1) of intact plants. The major compound of in vitro cultures was always rosmarinic acid. The content of RA could be increased approximately threefold (16.24 mg g?1) in the callus culture and approximately twofold (3.91 mg g?1) in the cell suspension culture by elicitation with 100 μM methyl jasmonate (MeJA). The higher concentration of sucrose (S) in the medium (5, 6 %) led to over a twofold increase of CGA content in the callus culture (2.54 mg g?1). The three mentioned phenolic acids have been found in E. planum undifferentiated and differentiated in vitro cultures for the first time.  相似文献   

9.
The switchgrass variety Alamo has been chosen for genome sequencing, genetic breeding, and genetic engineering by the US Department of Energy Joint Genome Institute (JGI) and the US Department of Energy BioEnergy Science Center. Lignin has been considered as a major obstacle for cellulosic biofuel production from switchgrass biomass. The purpose of this study was to provide baseline information on cell wall development in different parts of developing internodes of tillers of switchgrass cultivar Alamo and evaluate the effect of cell wall properties on biomass saccharification. Cell wall structure, soluble and wall-bound phenolics, and lignin content were analyzed from the top, middle, and bottom parts of internodes at different developmental stages using ultraviolet autofluorescence microscopy, histological staining methods, and high-performance liquid chromatography (HPLC). The examination of different parts of the developing internodes revealed differences in the stem structure during development, in the levels of free and well-bound phenolic compounds and lignin content, and in lignin pathway-related gene expression, indicating that the monolignol biosynthetic pathway in switchgrass is under complex spatial and temporal control. Our data clearly show that there was a strong negative correlation between overall lignin content and biomass saccharification efficiency. The ester-linked p-CA/FA ratio showed a positive correlation with lignin content and a negative correlation with sugar release. Our data provide baseline information to facilitate genetic modification of switchgrass recalcitrance traits for biofuel production.  相似文献   

10.
Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L?1). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to Dunaliella sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L?1) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L?1) into Amphora subtropica cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell?1, phenolics 0.092 to 0.257 mg GAE g?1 (Fw), and carotenoid content, from 0.08 to 0.59 mg g?1 (Fw), in A. subtropica. In Dunaliella sp., total lipids increased from 26.1 to 65.3 pg cell?1, phenolics from 0.084 to 0.289 mg GAE g?1 (Fw), and carotenoid content from 0.41 to 0.97 mg g?1 (Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.  相似文献   

11.
20-Hydroxyecdysone is one of the most common ecdysteroids in plants with potential therapeutic applications. In this study, cell suspension cultures of Achyranthes aspera were raised in shake flasks to investigate the production of 20-hydroxyecdysone. The quantification and characterization of 20-hydroxyecdysone in the cultures were done by High performance liquid chromatography (HPLC) and Liquid Chromatography-quadrupole time-of- flight mass spectrometry (LC-Q-TOF) analyses. For raising the suspension, calli initiated from in vitro grown leaf explants were cultured in liquid Murashige and Skoog (MS) medium augmented with combinations of 2, 4-dichlorophenoxyacetic acid (1 mg L?1) and α-naphthaleneacetic acid (1 mg L?1). Maximum growth index of the cell suspension was 9.9, which was achieved during 20th day of culture (final phase of exponential growth). At this stage, the biomass accumulated was 1.09 ± 0.09 g dry weight (DW) and the 20-hydroxyecdysone concentration was 0.24 mg g?1 DW. Eliciting the cultures with 0.6 mM Methyl jasmonate for 6 days; enhanced the production of 20-hydroxyecdysone production to 0.35 mg g?1 DW. By augmenting the cultures with the precursors namely cholesterol (10 mg L?1) and 7-dehydrocholesterol (10 mg L?1), production of 20-hydroxyecdysone was boosted to 0.31 mg g?1 DW and 0.28 mg g?1 DW respectively.  相似文献   

12.
The present research focused on enhancing the production of wedelolactone through cell suspension culture (CSC) in Eclipta alba (L.) Hassk. With an aim of attaining a sustainable CSC, various plant growth regulators, elicitors and agitation speed were examined. Nodal segments of in vitro propagated plantlets induced the maximum percentage (93.47?±?0.61%) of callus inoculated on Murashige and Skoog (MS) medium fortified with picloram (2 mg L?1). The growth kinetics of CSC exhibited a sigmoid pattern with a lag phase (0–6 days), a log phase (6–18 days), a stationary phase (18–24 days) and then death phase thereafter. The highest biomass accumulation in CSC with 7.09?±?0.06 g 50 mL?1 fresh weight, 1.52?±?0.02 g 50 mL?1 dry cell weight, 1.34?±?0.01?×?106 cell mL?1 total cell count and 57.00?±?0.58% packed cell volume was obtained in the liquid MS medium supplemented with 1.5 mg L?1 picloram plus 0.5 mg L?1 kinetin at 120 rpm. High performance thin layer chromatography confirmed that yeast extract (biotic elicitor) at 150 mg L?1 accumulated more CSC biomass with 1.22-fold increase in wedelolactone (288.97?±?1.94 µg g?1 dry weight) content in comparison to the non-elicited CSC (237.78?±?0.04 µg g?1 dry weight) after 120 h of incubation. Contrastingly, methyl jasmonate (abiotic elicitor) did not alter the biomass but increased the wedelolactone content (259.32?±?1.06 µg g?1 dry weight) to an extent of 1.09-fold at 100 µM. Complete plantlet regeneration from CSC was possible on MS medium containing N6-benzyladenine (0.75 mg L?1) and abscisic acid (0.5 mg L?1). Thus, the establishment of protocol for CSC constitutes the bases for future biotechnological improvement studies in this crop.  相似文献   

13.
Cellulosic biofuels are an important source of renewable biomass within the alternative energy portfolio. Switchgrass (Panicum virgatum L.), a perennial C4 grass native to North America, is widely studied as a biofuel feedstock for its consistently high yields and minimal input requirements. The influences of precipitation amount and temporal variability on the fertilizer response of switchgrass productivity are not fully understood. Moreover, global climate models predict changes in rainfall patterns towards lower and increasingly variable soil water availability in several productive areas worldwide, which may impact net primary production of biofuel crops. We conducted a meta-analysis of aboveground net primary production of switchgrass from 48 publications encompassing 82 different locations, 11 soil types, 52 switchgrass cultivars, fertilizer inputs between 0 to 896 kg N ha?1 year?1, and 1 to 6 years of annual productivity measures repeated on the same stand. Productivity of the lowland ecotype doubled with N rates >?131 kg N ha?1 year?1, but upland ecotype productivity increased only by 50%. Results showed an optimum N rate of 30 to 60 kg N ha?1 year?1 for both ecotypes, after which biomass gain per unit of N added decreased. Growing season precipitation (GSPPT) and inter-annual precipitation variability (inter-PPTvar) affected both ecotypes similarly. Long-term mean annual precipitation (MAP) differentially affected lowland and upland productivity, depending on the N level. Productivity responses to MAP and GSPPT were similar for both upland and lowland ecotypes at none or low N rates. When N increased beyond 60 kg N ha?1 year?1, lowland cultivars had a greater growth response to MAP than uplands. Productivity increased with increasing GSPPT and MAP and had a positive linear response to MAP ranging from 600 to 1200 mm year?1. One third of the variability in switchgrass production was accounted for by inter-PPTvar. After accounting for MAP, sites with higher inter-PPTvar had lower switchgrass productivity than sites with lower inter-PPTvar. Increased inter-annual variation in precipitation reduced production of both ecotypes. Predicted changes in the amount and timing of precipitation thus likely will exert greater influence on production of upland than lowland ecotypes of switchgrass.  相似文献   

14.
The capacity of a soil to sequester organic carbon can, in theory, be estimated as the difference between the existing soil organic C (SOC) concentration and the SOC saturation value. The C saturation concept assumes that each soil has a maximum SOC storage capacity, which is primarily determined by the characteristics of the fine mineral fraction (i.e. <20 µm clay + fine silt fraction). Previous studies have focussed on the mass of fine fractions as a predictor of soil C stabilisation capacity. Our objective was to compare single- and multi-variable statistical approaches for estimating the upper limit of C stabilisation based on measureable properties of the fine mineral fraction [e.g. fine fraction mass and surface area (SA), aluminium (Al), iron (Fe), pH] using data from New Zealand’s National Soils Database. Total SOC ranged from 0.65 to 138 mg C g?1, median values being 44.4 mg C g?1 at 0–15 cm depth and 20.5 mg C g?1 at 15–30 cm depth. Results showed that SA of mineral particles was more closely correlated with the SOC content of the fine fraction than was the mass proportion of the fine fraction, indicating that it provided a much better basis for estimating SOC stabilisation capacity. The maximum C loading rate (mg C m?2) for both Allophanic and non-Allophanic soils was best described by a log/log relationship between specific SA and the SOC content of the fine fraction. A multi-variate regression that included extractable Al and soil pH along with SA provided the “best fit” model for predicting SOC stabilisation. The potential to store additional SOC (i.e. saturation deficit) was estimated from this multivariate equation as the difference between the median and 90th percentile SOC content of each soil. There was strong evidence from the predicted saturation deficit values and their associated 95 % confidence limits that nearly all soils had a saturation deficit >0. The median saturation deficit for both Allophanic and non-Allophanic soils was 12 mg C g?1 at 0–15 cm depth and 15 mg C g?1 at 15–30 cm depths. Improving predictions of the saturation deficit of soils may be important to developing and deploying effective SOC sequestration strategies.  相似文献   

15.
The influence of cytokinins and culture conditions including medium volume, harvest time and elicitation with abiotic elicitors (SA/MeJ) have been studied for the optimal production of biomass and withanolides in the multiple shoot culture of Withania somnifera. Elicitation of shoot inoculum mass (2 g l?l FW) with SA at 100 μM in the presence of 0.6 mg l?l BA and 20 mg l?l spermidine for 4 h exposure time at the 4th week in 20 ml liquid medium recorded higher withanolides production (withanolides A [8.48 mg g?l DW], withanolides B [15.47 mg g?l DW], withaferin A [29.55 mg g?l DW] and withanone [23.44 mg g?l DW]), which were 1.14 to 1.18-fold higher than elicitation with MeJ at 100 μM after 5 weeks of culture. SA-elicited cultures did not exhibit much variation in biomass accumulation when compared to control. This cytokinin induces and SA-elicited multiple shoot culture protocol provides a potential alternative for the optimal production of biomass and withanolides utilizing liquid culture.  相似文献   

16.
Fourteen taxa from Chlorophyta, Rhodophyta and Phaeophyta were collected from seven stations at different depths, along the north-western Mediterranean coast of Egypt during winter and summer 2006. Total carbohydrates (TCH), total protein (TPr), total lipids (TL), chlorophyll a, β-carotene, minerals and trace metals were determined in a total of 50 specimens. The concentrations of these components varied significantly with respect to the algal taxa and showed different patterns of distribution in the three classes. The content of TCH ranged from 5 to 20.9?%, being much higher for Cystoseira spinosa (20.9?%), TPr 3.86 to 27.65?% where Gelidium corneum showed the maximum value and TL content displayed wide variation (2.34 to 48.95?%), with Sargassum hornschuchii having the highest values. A minor component was β-carotene in all samples (1.80?2.50?×?10?3 mg (100 g)?1) which was much lower than in vegetables, in contrast to chlorophyll a concentrations which have attained high values (6.70?94.20 mg (100 g)?1) and were lower than in vegetables. Mineral content was abundant in all samples and was higher than in common food and vegetables, whereas the measured trace metals all exceeded the permissible doses and were far from the accepted concentrations in the regulations of many countries. This limits their use in food consumption, except copper which recorded acceptable concentrations in the study. The maximum values of phosphorus (3,305 mg (100 g?1), potassium (930 mg (100 g?1) and calcium (3,070 mg (100 g?1) were recorded in members of Chlorophyceae: Codium bursa, Udotea sp. and Udotea petiolata, whereas the red alga Rhodymenia ardissonei had the lowest concentrations in iodine (80 ppm) and sodium (1,450 mg (100 g)?1) and the highest concentrations in the trace metals copper (3.89 ppm), nickel (13.14 ppm), zinc (38.87 ppm) and a relatively large amount of lead (41.60 ppm).  相似文献   

17.
Fundamental understanding of biomass pretreatment and its influence on saccharification kinetics, total sugar yield, and inhibitor formation is essential to develop efficient next-generation biofuel strategies, capable of displacing fossil fuels at a commercial level. In this study, we investigated the effect of residence time and temperature during ionic liquid (IL) pretreatment of switchgrass using 1-ethyl-3-methyl imidazolium acetate. The primary metrics of pretreatment performance are biomass delignification, xylan and glucan depolymerization, porosity, surface area, cellulase kinetics, and sugar yields. Compositional analysis and quantification of process streams of saccharides and lignin demonstrate that delignification increases as a function of pretreatment temperature and is hypothesized to be correlated with the apparent glass transition temperature of lignin. IL pretreatment did not generate monosaccharides from hemicellulose. Compared to untreated switchgrass, Brunauer–Emmett–Teller surface area of pretreated switchgrass increased by a factor of ~30, with a corresponding increase in saccharification kinetics of a factor of ~40. There is an observed dependence of cellulase kinetics with delignification efficiency. Although complete biomass dissolution is observed after 3 h of IL pretreatment, the pattern of sugar release, saccharification kinetics, and total sugar yields are strongly correlated with temperature.  相似文献   

18.
In this study, the fractionation and distribution of phosphorus (P) in the core sediments of the Shanmei reservoir were investigated by using the chemical extraction method in directions for the first time in order to understand its bio-availability, adsorption characteristics, potential release and environmental significance. The results of the study showed that P in the sediments mainly consisted of inorganic phosphorus (IP) and that IP mainly consisted of non-apatite phosphorus (NAIP). The horizontal and temporal distributions of the P fractions were different from each other, but the vertical distribution was similar, which indicated a trend of stabilization after falling. The content of total phosphorus (TP), IP, organic phosphorus (OP), NAIP, apatite phosphorus (AP), and bio-available phosphorus (BAP) in the sediments during the three seasons ranged from 193.85 to 1664.05 mg·kg?1, 126.90 to 1127.70 mg·kg?1, 43.74 to 669.29 mg·kg?1, 57.62 to 937.07 mg·kg?1, 32.58 to 250.71 mg·kg?1, and 41.06 to 871.82 mg·kg?1, respectively. NAIP contents in the sediments accounted for more than 50% of TP. Using an analysis from three aspects, the eutrophication risk index (ERI) could be used to assess the potential release of P in the sediments, and there was a high release risk of P in the sediments in the Shanmei reservoir.  相似文献   

19.
Pistachio is a tree of the arid and semi-arid regions where salinity and boron (B) toxicity can be major environmental stresses. In this study, individual and combined effects of different concentrations of NaCl (0, 800, 1600, 2400 and 3200 mg kg?1 soil) and B (0, 2.5, 5.0, 10.0 and 20.0 mg kg?1 soil) were studied on growth, gas-exchange and mineral composition of pistachio seedlings for a duration of 120 days. Excess amounts of salinity (> 1600 mg NaCl kg?1 soil) and B (20.0 mg kg?1 soil) significantly reduced the plant growth and CO2 assimilation, which was associated with accumulation of Na, Cl and B in leaves. There was also a decline in cell membrane stability index (MSI). Reduced stomatal conductance (g s) was the primary cause of inhibition of photosynthesis rate (P N) under mild to moderate salinity. However, under severe salt stress and B toxicity, non-stomatal effects contributed to the inhibition of CO2 assimilation in addition to the decline in g s value. Application of 5.0–10.0 mg B kg?1 soil significantly improved the plant growth and P N and also recovered the MSI as countermeasures against salt stress. These observations were related to the role of B in cell membrane structure and functioning which reduced the concentration of toxic ions in the leaves. However, cell membrane damages and chlorophyll loss in plants affected by salt were observed to be exacerbated when excess amounts of B were present. In conclusion, the results revealed that optimizing the B nutrition can improve the performance of pistachio seedlings under salt stress, and NaCl also showed a mitigating effect on B toxicity if its concentration in the soil is kept under the plant salt tolerance threshold.  相似文献   

20.
In this study, adventitious roots of Panax quinquefolium L. have been successfully established. The highest induction rate of roots was obtained in MS medium containing 3 mg L?1 IBA after 4 weeks of culture. The culture conditions of adventitious root were optimized and evaluated with response surface methodology. The best culture conditions for root growth seemed to be 0.75 salt strength MS medium, 4.70 g L?1 inoculum size and 40 days of culture. The active component contents of adventitious roots were compared with those of native roots. The total saponins content was found to be 16.28 mg g?1 in native root and 4.64 mg g?1 in adventitious root. The polysaccharide content of the adventitious root was 1.5 times higher than that in the native P. quinquefolium (30.54 vs. 20.28 mg g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号