首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interest and focus on development of renewable biofuels has been increasing over the past decade leading to the introduction of a wide cadre of renewable feedstocks. As a result, numerous perennial warm-season grasses have been introduced and management practices evaluated to determine their suitability as biofuel feedstocks. “Merkeron” napier grass (Pennisetum purpureum) plots were established in 2010 and harvested during crop years 2011 through 2015 adjacent to an on-going peanut (Arachis hypogaea L.), corn (Zea mays L.), and cotton (Gossypium hirsutum L.) cropping systems study conducted at the USDA/ARS Multi-crop Irrigation Research Farm in Shellman, GA (84 36 W, 30 44 N) on a Greenville fine sandy loam (fine, kaolinitic, thermic Rhodic Kandiudults). Napier grass was produced in both non-irrigated and two irrigated levels with different levels of nitrogen and potassium fertilizers. Peanut, corn, and cotton were produced in non-irrigated and full irrigation regimes. Breakeven prices for napier grass ranged from $65 to $84 Mg?1 at variable and total costs. The breakeven napier grass price was estimated such that the net returns were equal between napier grass and peanut, cotton, corn cropping systems. At variable production cost, comparative breakeven napier grass prices for non-irrigated, 50% irrigated, and full irrigated regimes were $77, $117, and $112 Mg?1, respectively. Napier grass did not compete economically against traditional irrigated cropping systems. Depending on traditional crop prices and bioenergy feed stock prices, napier grass could offer economic opportunities in non-irrigated production environments, riparian buffer zone edges, or non-cropped marginal production areas.  相似文献   

2.
Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. We used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land‐use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed‐scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus × giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal of corn stover and combinations of these options. Water quality, measured as erosion and sediment loading, was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate‐nitrogen and 3–56% for mineral phosphorus); however, the reduction rates were specific to site characteristics and management practices.  相似文献   

3.
Perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6‐year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn (Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk into three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit‐oriented farmers who are risk neutral or risk averse, perennial bioenergy crops have a higher potential to successfully compete with corn under marginal crop production conditions.  相似文献   

4.
SWAT watershed model simulated biomass yield and pollutant loadings were integrated with associated economic costs of farm production and transport to study two dedicated energy crops, switchgrass and Miscanthus, and corn stover, as feedstocks for a cellulosic biorefinery. A multi-level spatial optimization (MLSOPT) framework was employed to get spatially explicit cropping plans for a watershed under the assumption that the watershed supplies biomass to a hypothetical biorefinery considering both the biochemical and the thermochemical conversion pathways. Consistent with previous studies, the perennial grasses had higher biomass yield than corn stover, with considerably lower sediment, nitrogen, and phosphorus loadings, but their costs were higher. New insights were related to the tradeoffs between cost, feedstock production, and the level and form of environmental quality society faces as it implements the Renewable Fuel Standard. Economically, this involved calculating the farthest distance a biorefinery would be willing to drive to source corn residue before procuring a single unit of perennial grasses from productive agricultural soils.  相似文献   

5.
Switchgrass (Panicum virgatum) is a C4 perennial grass and is the model herbaceous perennial bioenergy feedstock. Although it is indigenous to North American grasslands east of the Rocky Mountains and has been planted for forage and conservation purposes for more than 75 years, there is concern that switchgrass grown as a biofuel crop could become invasive. Our objective is to report on the invasion of C4 and C3 grasses into the stands of two switchgrass cultivars following 10 years of management for biomass energy under different N and harvest management regimes in eastern Nebraska. Switchgrass stands were invaded by big bluestem (Andropogon gerardii), smooth bromegrass (Bromus inermis), and other grasses during the 10 years. The greatest invasion by grasses occurred in plots to which 0 N had been applied and with harvests at anthesis. In general, less grass encroachment occurred in plots receiving at least 60 kg of N ha?1 or in plots harvested after frost. There were differences among cultivars with Cave-in-Rock being more resistant to invasion than Trailblazer. There was no observable evidence of switchgrass from this study invading into border areas or adjacent fields after 10 years of management for biomass energy. Results indicate that switchgrass is more likely to be invaded by other grasses than to encroach into native prairies or perennial grasslands seeded on marginally productive cropland in the western Corn Belt of the USA.  相似文献   

6.
Grasslands enrolled in the Conservation Reserve Program (CRP) serve as one of the potential national herbaceous resources for use as a dedicated bioenergy feedstock. The goal of this project was to assess the yield potential and suitability of CRP grassland as a bioenergy feedstock source across the USA in regions with significant CRP land resources. In addition to that goal, one major objective of this project was to assess vegetation composition changes that also occurred on these different CRP grasslands over time with different harvest and fertilization management strategies. Three levels of nitrogen fertilization (0, 56, and 112 kg ha?1) and two harvest timings [peak standing crop (PSC) or end of growing season (EGS)] were evaluated for effects on biomass production and resulting species composition changes. Three sites in regions containing concentrated tracts of CRP grassland and representing variable climatic parameters were analyzed for vegetation composition trends over the course of six growing seasons (2008–2013). Specifically, a mixture of warm-season perennial grasses was evaluated in Kansas (KS), while a cool-season mixture was evaluated in Missouri (MO). North Dakota (ND) contained a mixture of both warm- and cool-season grasses. At the MO and KS sites, nitrogen fertilization significantly altered the grass and legume composition over time by lowering the legume percentage in the stand. In KS and ND, the two sites with warm-season grasses, harvesting in mid-summer at PSC, greatly reduced warm-season grass composition over time in favor of annual cool-season grass invaders or perennial cool-season grasses. Any shift to less desirable or less productive species limits the ability of these lands to provide a sustainable or reliable feedstock for bioenergy production.  相似文献   

7.
To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ~14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ~132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.  相似文献   

8.
5-(Chloromethyl) Furfural (CMF) is a potential chemical building block for replacing petroleum-derived chemicals derived from lignocellulosic feedstocks. In this study, hand harvested corn stover and mechanically forage chopped corn stover was processed in a 1 L hydrolysis reactor to produce CMF in a biphasic, two solvent system. Both 1,2 dichloroethane (DCE) and dichloromethane (DCM) were tested as organic solvents. The results showed that DCE performed better than DCM due to temperature and pressure limitations of the reactor system. Using DCE as the extracting solvent, the effects of solids loading, particle size, and moisture content of the corn stover on the hydrolysis efficiency were determined. One liter acid hydrolysis reactor provides consistent and reproducible yields of 63% CMF from hand harvested corn stover as feedstock at solid loading of 10% wt/v, 100C for 1 h. For the forage chopped corn stover, increasing particle size brings an increase in the feedstock sugar content. Foraged chopped corn stover (FCCS) particle sizes larger than 19 mm (0.75 in.) results in significant reduction in CMF yield from 43 to 35%.  相似文献   

9.
Prairies used for bioenergy production have potential to generate marketable products while enhancing environmental quality, but little is known about how prairie species composition and nutrient management affect the suitability of prairie biomass for bioenergy production. We determined how functional‐group identity and nitrogen fertilization affected feedstock characteristics and estimated bioenergy yields of prairie plants, and compared those prairie characteristics to that of corn stover. We tested our objectives with a field experiment that was set up as a 5 × 2 incomplete factorial design with C3 grasses, C4 grasses, legumes, and multi‐functional‐group mixtures grown with and without nitrogen fertilizer; a fertilized corn treatment was also included. We determined cell wall, hemicellulose, cellulose, and ash concentrations; ethanol conversion ratios; gross caloric ratios; aboveground biomass production; ethanol yields; and energy yields for all treatments. Prairie functional‐group identity affected the biomass feedstock characteristics, whereas nitrogen fertilization did not. Functional group and fertilization had a strong effect on aboveground biomass production, which was the major predictor of ethanol and energy yields. C4 grasses, especially when fertilized, had among the most favorable bioenergy characteristics with high estimated ethanol conversion ratios and nongrain biomass production, relatively high gross caloric ratios, and low ash concentrations. The bioenergy characteristics of corn stover, from an annual C4 grass, were similar to those of the biomass of perennial C4 grasses. Both functional‐group composition and nitrogen fertility management were found to be important in optimizing bioenergy production from prairies.  相似文献   

10.
Perennial bioenergy crops are considered an important feedstock for a growing bioeconomy. However, in the USA, production of biofuel from these dedicated, nonfood crops is lagging behind federal mandates and markets have yet to develop. Most studies on the economic potential of perennial biofuel crops have concluded that even high‐yielding bioenergy grasses are unprofitable compared to corn/soybeans, the prevailing crops in the United States Corn Belt. However, they did not account for opportunities precision agriculture presents to integrate perennials into agronomically and economically underperforming parts of corn/soybean fields. Using publicly available subfield data and market projections, we identified an upper bound to the areas in Iowa, United States, where the conversion from corn/soybean cropland to an herbaceous bioenergy crop, switchgrass, could be economically viable under different price, land tenancy, and yield scenarios. Assuming owned land, medium crop prices, and a biomass price of US$ 55 Mg?1, we showed that 4.3% of corn/soybean cropland could break even when converted to switchgrass yielding up to 10.08 Mg ha?1. The annualized change in net present value on each converted subfield patch ranged from just above US$ 0 ha?1 to 692 ha?1. In the three counties of highest economic opportunity, total annualized producer benefits from converting corn/soybean to switchgrass summed to US$ 2.6 million, 3.4 million, and 7.6 million, respectively. This is the first study to quantify an upper bound to the potential private economic benefits from targeted conversion of unfavorable corn/soybean cropland to switchgrass, leaving arable land already under perennial cover unchanged. Broadly, we conclude that areas with high within‐field yield variation provide highest economic opportunities for switchgrass conversion. Our results are relevant for policy design intended to improve the sustainability of agricultural production. While focused on Iowa, this approach is applicable to other intensively farmed regions globally with similar data availability.  相似文献   

11.
Lignocellulosic biofuels can help fulfill escalating demands for liquid fuels and mitigate the environmental impacts of petroleum‐derived fuels. Two key factors in the successful large‐scale production of lignocellulosic biofuels are pretreatment (in biological conversion processes) and a consistent supply of feedstock. Cellulosic biomass tends to be bulky and difficult to handle, thereby exacerbating feedstock supply challenges. Currently, large biorefineries face many logistical problems because they are fully integrated, centralized facilities in which all units of the conversion process are present in a single location. The drawbacks of fully integrated biorefineries can potentially be dealt by a network of distributed processing facilities called ‘Regional Biomass Processing Depots’ (RBPDs) which procure, preprocess/pretreat, densify and deliver feedstock to the biorefinery and return by‐products such as animal feed to end users. The primary objective of this study is to perform a comparative life cycle assessment (LCA) of distributed and centralized biomass processing systems. Additionally, we assess the effect that apportioning land area to different feedstocks within a landscape has on the energy yields and environmental impacts of the overall systems. To accomplish these objectives, we conducted comparative LCAs of distributed and centralized processing systems combined with farm‐scale landscapes of varying acreages allocated to a ‘corn‐system’ consisting of corn grain, stover and rye (grown as a winter double crop) and two perennial grasses, switchgrass and miscanthus. The distributed processing system yields practically the same total energy and generates 3.7% lower greenhouse gas emissions than the centralized system. Sensitivity analyses identified perennial grass yields, biomass densification and its corresponding energy requirements, transport energy requirements and carbon sequestration credits for conversion from annual to perennial crops as key parameters that significantly affect the overall results.  相似文献   

12.
Zhu X  Yao Q 《Bioresource technology》2011,102(23):10936-10945
It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel.  相似文献   

13.
When the USA passed the Renewable Fuel Standards (RFS) of 2007 into law, it mandated that, by the year 2022, 36 billion gallons of biofuels be produced annually in the USA to displace petroleum. This targeted quota, which required that at least half of domestic transportation fuel be “advanced biofuels” either produced from lignocellulosic feedstocks or be a sustainable liquid fuel other than corn ethanol or biodiesel from vegetable oils, will not likely be met due to the difficulty in commercializing alternative biofuels. The number one cost to a biorefinery is the biomass feedstock cost. Thus, it is important that research into biorefinery strategies be closely coupled to advances in crop science that account for crop yield and crop quality. To reach the RFS targets, stepwise progress in biorefinery technology is needed, as the industry moves from corn ethanol toward utilizing a wider array of lignocellulose-based biomass feedstocks. In 2010, the US Department of Agriculture created five Regional Biomass Research Centers to optimize production, collection, and conversion of crops to bioenergy, thus building a network that fosters collaboration among researchers to improve the biorefinery industry. An important component of the five Regional Biomass Research Centers is the four USDA Agricultural Research Service (ARS) regional utilization laboratories located across the country. These USDA ARS labs were originally set up by their commodities, whereby, in broad terms, the Northern Lab, now NCAUR, focused on corn and soy; the Eastern Lab on oils, leather, dairy, and meats; the Southern Lab on cotton, sugars, and fibers; and the Western Lab on other grains, including wheat and specialty crops. Each lab’s traditional expertise in these respective core commodity crops has been maintained as biofuel research came to the fore, but with the addition of new crops and biotechnological expertise, these labs often collaborate with each other, as will be revealed below. This review outlines some of the recent advances from the ARS labs in developing new bioprocessing strategies required to develop bioenergy from new crop sources.  相似文献   

14.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

15.
Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha?1 (fall) and 5.4 Mg ha?1 (spring) with similar high heating value (17.7 MJ kg?1). The K/(Ca?+?Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13 % by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.  相似文献   

16.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

17.
Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.  相似文献   

18.
Removal of corn (Zea mays L.) residues at high rates for biofuel and other off‐farm uses may negatively impact soil and the environment in the long term. Biomass removal from perennial warm‐season grasses (WSGs) grown in marginally productive lands could be an alternative to corn residue removal as biofuel feedstocks while controlling water and wind erosion, sequestering carbon (C), cycling water and nutrients, and enhancing other soil ecosystem services. We compared wind and water erosion potential, soil compaction, soil hydraulic properties, soil organic C (SOC), and soil fertility between biomass removal from WSGs and corn residue removal from rainfed no‐till continuous corn on a marginally productive site on a silty clay loam in eastern Nebraska after 2 and 3 years of management. The field‐scale treatments were as follows: (i) switchgrass (Panicum virgatum L.), (ii) big bluestem (Andropogon gerardii Vitman), and (iii) low‐diversity grass mixture [big bluestem, indiangrass (Sorghastrum nutans (L.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)], and (iv) 50% corn residue removal with three replications. Across years, corn residue removal increased wind‐erodible fraction from 41% to 86% and reduced wet aggregate stability from 1.70 to 1.15 mm compared with WSGs in the upper 7.5 cm soil depth. Corn residue removal also reduced water retention by 15% between ?33 and ?300 kPa potentials and plant‐available water by 25% in the upper 7.5 cm soil depth. However, corn residue removal did not affect final water infiltration, SOC concentration, soil fertility, and other properties. Overall, corn residue removal increases erosion potential and reduces water retention shortly after removal, suggesting that biomass removal from perennial WSGs is a desirable alternative to corn residue removal for biofuel production and maintenance of soil ecosystem services.  相似文献   

19.
Crop residues like corn (Zea mays L.) stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn stover removal from a no-till, corn-soybean (Glycine max (L.) Merr) rotation on soil greenhouse gas (GHG; CO2, N2O, CH4) fluxes, crop yields, and soil organic carbon (SOC) dynamics. We conducted a 4-year study using replicated field plots managed with two levels of corn stover removal (none; 55 % stover removal) for four complete crop cycles prior to initiation of ground surface gas flux measurements. Corn and soybean yields were not affected by stover removal with yields averaging 7.28 Mg ha?1 for corn and 2.64 Mg ha?1 for soybean. Corn stover removal treatment did not affect soil GHG fluxes from the corn phase; however, the treatment did significantly increase (107 %, P?=?0.037) N2O fluxes during the soybean phase. The plots were a net source of CH4 (~0.5 kg CH4-C ha?1 year?1 average of all treatments and crops) during the generally wet study duration. Soil organic carbon stocks increased in both treatments during the 4-year study (initiated following 8 years of stover removal), with significantly higher SOC accumulation in the control plots compared to plots with corn stover removal (0–15 cm, P?=?0.048). Non-CO2 greenhouse gas emissions (945 kg CO2-eq ha?1 year?1) were roughly half of SOC (0–30 cm) gains with corn stover removal (1.841 Mg CO2-eq ha?1 year?1) indicating that no-till practices greatly improve the viability of biennial corn stover harvesting under local soil-climatic conditions. Our results also show that repeated corn stover harvesting may increase N loss (as N2O) from fields and thereby contribute to GHG production and loss of potential plant nutrients.  相似文献   

20.
Crop residues are potential biofuel feedstocks, but residue removal may reduce soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass, mitigating the negative effects of residue removal by adding to stable soil C pools. In a no‐till continuous corn bioenergy system in the northern US Corn Belt, we used 13CO2 pulse labeling to trace plant C from a winter rye (Secale cereale) cover crop into different soil C pools for 2 years following rye cover crop termination. Corn stover left as residue (30% of total stover) contributed 66, corn roots 57, rye shoots 61, rye roots 50, and rye rhizodeposits 25 g C m?2 to soil. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools than were aboveground inputs, and much of the root‐derived C was in mineral‐associated soil fractions. After 2 years, both above‐ and belowground inputs had declined substantially, indicating that the majority of both root and shoot inputs are eventually mineralized. Our results underscore the importance of cover crop roots vs. shoots and the importance of cover crop rhizodeposition (33% of total belowground cover crop C inputs) as a source of soil C. However, the eventual loss of most cover crop C from these soils indicates that cover crops will likely need to be included every year in rotations to accumulate soil C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号