首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legionella pneumophila is a strict intracellular pathogen that replicates in the professional phagocytes of the human and guinea pig host. Although murine macrophages from most inbred strains are non-permissive to intracellular replication of L. pneumophila, inflammatory macrophages from the mouse strain A/J are completely permissive to intracellular replication of this bacterium. This genetic difference is controlled by the expression of a single autosomal gene designated Lgn1, with non-permissiveness behaving as completely dominant over permissiveness. We have used a total of 25 AXB/BXA recombinant inbred mouse strains and 182 (A/JxC57BL/6J)xA/J segregating backcross progeny (A/J, permissive; C57BL/6J, non-permissive) to map the Lgn1 gene. Animals were individually type for tolerance to intracellular replication by in vitro infection of their inflammatory macrophages with L. pneumophila. All animals segregated into two non-overlapping groups. Examination of the strain distribution pattern of the AXB/BXA strains for Lgn1 initially identified linkage to Chromosome (Chr) 13 markers. Genotyping of the 25 AXB/BXA strains and the 182 backcross progeny for 11 Chr 13 markers established that Lgn1 mapped to Chr 13, with the gene order and intergene distance D13Mit231-(5.5±1.5)-D13Mit193-(2.2±0.9)-D13Mit194-(1.1±0.6)-D13Mit128-(2.6±1.0)-Lgn1-(2.2±0.9)-D13Mit70-(3.9±1.3)-D13Mit73-(7.2±1.7)-D13Mit53-(0.7±0.5)-D13Mit32-(0.7±0.5)-D13Mit77-(0.7±0.5)-D13Mit78. This portion of Chr 13 is homologous to the distal portion of human Chr 5, 5q11–5q13, suggesting a possible location of a human LGN1 homolog. Understanding the molecular basis of the high permissiveness of A/J macrophage to L. pneumophila may shed light on the survival strategy of this bacterium in highly permissive human phagocytes. This may be achieved by positional cloning of Lgn1, and the identification of the Lgn1 subchromosomal region reported here is a first step towards that goal.  相似文献   

2.
Unravelling the complex genetics of cleft lip in the mouse model   总被引:2,自引:0,他引:2  
Nonsyndromic cleft lip in ``A' strain mice and humans is genetically complex and is distinct from isolated cleft palate. Cleft lip embryos recovered in 2.4% of 1485 first backcross (BC1) segregants from a cross of A/WySnJ (24% cleft lip) and C57BL/6J (no cleft lip) in A/WySnJ mothers, and in testcrosses of 10 recombinant inbred (RI) strains (AXB/Pgn or BXA/Pgn), were used for gene mapping and for inference of genetic architecture. The A/WySnJ maternal genotype increased cleft lip risk in reciprocal crosses; the relevant genetic difference between AXB-6/Pgn (8%) and A/WySnJ (24%) is entirely maternal. A combination of new mapping panels (325 meioses), new markers, and a recombinant cleft lip embryo redefined the location of a recessive factor essential to cleft lip risk, clf1, and candidate genes Itgb3 and Crhr, to between D11Mit146/360 and D11Mit166/147. A screen of 54 YACs for 46 genes and SSLP loci located Wnt15, Wnt3, Crhr, Mtapt, Itgb3, Dlx3, and Dlx7 within the clf1 candidate region. The clf2 locus was newly mapped to Chromosome (Chr) 13 by a genome screen of BC1 segregants, and further defined to a 4-cM region between D13Mit13/54 and D13Mit231 by strain distribution patterns of cleft lip liability and markers in testcrossed RI strains. Specific combinations of marker genotypes associated with cleft lip risk indicated that high risk in A/WySnJ mice is caused by epistatic interaction between clf1 and clf2 in the context of a genetic maternal effect. Human homologs of clf1 and clf2 are expected to be on 17q and 5q/9q. Received: 17 May 2000 / Accepted: 30 November 2000  相似文献   

3.
The AXB and BXA set of recombinant inbred mouse strains   总被引:1,自引:1,他引:0  
The recombinant inbred (RI) set of strains, AXB and BXA, derived from C57BL/6J and A/J, originally constructed and maintained at the University of California/San Diego, have been imported into The Jackson Laboratory and are now in the 29th to 59th generation of brother-sister matings. Genetic quality control testing with 45 proviral and 11 biochemical markers previously typed in this RI set indicated that five strains had been genetically contaminated sometime in the past, so these strains have been discarded. The correct and complete strain distribution patterns for 56 genetic markers are reported for the remaining RI strain set, which consists of 31 living strains and 8 extinct strains for which DNA is available. Two additional strains, AXB 12 and BXA 17, are living and may be added to the set pending further tests of genetic purity. The progenitors of this RI set differ in susceptibility to 27 infectious diseases as well as atherosclerosis, obesity, diabetes, cancer, cleft palate, and hydrocephalus. Thus, the AXB and BXA set of RI strains will be useful in the genetic analysis of several complex diseases.  相似文献   

4.
An edited linkage map for the AXB and BXA recombinant inbred mouse strains   总被引:3,自引:0,他引:3  
We have updated the history of the AXB and BXA recombinant inbred (RI) strains, typed additional loci, and edited the AXB, BXA RI database. Thirteen of the original 51 AXB and BXA RI strains are either extinct or genetically contaminated, leaving 33 living strains available from The Jackson Laboratory. However, we found a high degree of similarity among three sets of strains, indicating that these strains are not independent, which leaves 27 independent RI strains in the set. Accordingly, we modified the database by combining the AXB and BXA RI sets and eliminating strains that were genetically contaminated or extinct with no available DNA. We added 92 newly typed loci, retyped some questionable genotypings, and removed loci with excessive double crossovers or an insufficient number of typed strains. The edited strain distribution pattern (SDP) is available on the World Wide Web (WWW) (http://www.informatics.jax.org/riset.html) and now includes over 700 loci. Each locus is linked to adjacent loci with a LOD score of at least 3.0 with a few described exceptions. We also carried out a second editing designed for the analysis of quantitative trait loci by deleting extinct strains and loci with identical SDPs; this edited database is also available on the WWW. Received: 20 March 1998 / Accepted: 26 May 1998  相似文献   

5.
The purpose of the present study was to characterize the C57BL/6J, A/J, and AXB/BXA Recombinant Inbred (RI) strains of mice for voluntary alcohol consumption. Quantitative Trait Locus (QTL) analysis was used to provide provisional location of QTLs for alcohol consumption. The inbred strains were screened for levels of alcohol intake (calculated as alcohol preference and absolute alcohol consumption) by receiving 4 days of forced exposure to a 10% (wt/vol) solution of alcohol, followed by 3 weeks of free choice between water and 10% alcohol. A wide and continuous distribution of values for alcohol consumption and preference was obtained in the AXB/BXA RI strains, confirming polygenic influences on alcohol-related behaviors. Significant gender differences were found for both alcohol preference [F28,651= 2.12, p < 0.001] and absolute alcohol consumption [F28,647= 2.57, p < 0.001]. In males, putative QTLs were mapped to chromosomes (Chrs) 2, 5, 7, 10, 11, and 16. Multiple regression analysis indicated that approximately 75% of the genetic variance in alcohol preference in males could be accounted for by three of the QTL regions. Several of the putative QTLs appeared to be male-specific (Tyr on Chr 7; D10Mit126 on Chr 10; D11Mit61 on Chr 11). In females, seven putative QTLs were mapped to Chrs 2, 4, 5, 7, 11, 16, and 19. Approximately 90% of the genetic variance in alcohol preference in females could be accounted for by four QTL regions, as determined by multiple regression. The QTL on Chr 11 near D11Mit35 appeared to be female-specific. This site was close to a female-specific QTL (Alcp2) previously mapped in C57BL/6J × DBA/2J backcrosses by Melo and coworkers (Nat Genet 13, 147, 1996). The QTLs mapped for alcohol preference in the present study must be considered suggestive at the present time, since only D2Mit74 met very strict statistical criteria for significance. However, the concordance across several studies for the loci on Chrs 2, 4, 7, 9, and 11 suggest that some common QTLs influencing alcohol preference have been identified. Confirmation of QTLs mapped in the present study is currently being conducted in a new series of recombinant congenic (RC) strains developed from reciprocal backcrosses between the A/J and C57BL/6J progenitors. The concomitant use of both RI and RC strains developed from the same progenitors should provide a powerful means of detecting, confirming, and mapping QTLs for alcohol-related traits. Received: 25 August 1998 / Accepted: 8 October 1998  相似文献   

6.
The recessive muted (mu) and pearl (pe) mutations on Chromosome (Chr) 13 cause pigment dilution and platelet storage pool deficiency (SPD) in mice. In addition, mu causes inner ear abnormalities and pe has symptoms associated with night blindness. Using an interspecific backcross involving the wild-derived Mus musculus musculus (PWK) stock, we have mapped 33 microsatellite markers and four cDNAs relative to mu, pe, and another recessive mutation, satin (sa). Analyzing a total of 528 backcross offspring, we found tight linkage between the pigment loci and several microsatellite markers (D13Mit87, D13Mit88, D13Mit137 with mu; and D13Mit104, D13Mit160, D13Mit161, and D13Mit169 with pe). These markers should aid the eventual molecular identification of these specific SPD genes.  相似文献   

7.
Lambda clones of mouse DNA from BALB/c and C57BL/10, each containing an array of telomere hexamers, were localized by FISH to a region close to the telomere of Chr 13. Amplification of mouse genomic DNA with primers flanking SSRs within the cloned DNA showed several alleles, which were used to type eight sets of RI strains. The two lambda clones contained allelic versions of the interstitial telomere array, Tel-rs4, which is 495 bp in C57BL/10 and which includes a variety of sequence changes from the consensus telomere hexamer. Comparison of the segregation of the amplification products of the SSRs with the segregation of other loci in an interspecies backcross (C57BL/6JEi × SPRET/Ei) F1× SPRET/Ei shows recombination suppression, possibly associated with ribosomal DNA sequences present on distal Chr 13 in Mus spretus, when compared with recombination in an interstrain backcross, (C57BL/6J × DBA/J) F1× C57BL/6J, and with the MIT F2 intercross. Analysis of recombination in females using a second interstrain backcross, (ICR/Ha × C57BL/6Ha) F1× C57BL/6Ha, also indicates recombination suppression when compared with recombination in males of the same strains, using backcross C57BL/6Ha × (ICR/Ha × C57BL/6Ha) F1. Thus, more than one cause may contribute to recombination suppression in this region. The combined order of the loci typed was D13Mit37–D13Mit30–D13Mit148–(D13Rp1, 2, 3, 4, Tel-rs4)–D13Mit53–D13Mit196–D13Mit77–(D13Mit78, 35). Data from crosses where apparently normal frequencies of recombination occur suggest that the telomere array is about 6 map units proximal to the most distal loci on Chr 13. This distance is consistent with evidence from markers identified in two YAC clones obtained from the region. Received: 24 September 1996/Accepted: 20 January 1997  相似文献   

8.
The integrin alpha 1 chain (Vla1) associates with the beta 1 chain to form a heterodimer that functions as a dual laminin/collagen receptor in neural cells and hematopoietic cells. We have used an interspecies backcross gene-mapping technique to map the Vla1 gene to the distal end of chromosome 13 in the mouse genome. The Vla1 locus is located 3.5 cM distal to Ctla-3 and 7.8 cM distal to Htrla. We have further characterized this locus in recombinant inbred (RI) mice by examining the strain distribution patterns of nine genomic DNA restriction fragment length variants detected with alpha 1 cDNA probes. The RI gene mapping did not show linkage to previously mapped genes or mutants in the AXB, BXA, or AKXD RI sets and therefore defines a new genetic marker for the distal end of chromosome 13 in these RI sets.  相似文献   

9.
A number of processes are important in the development of substance dependence including initial sensitivity to the acute pharmacological effects of drugs/alcohol. The objectives of the present study were (1) to identify quantitative trait loci (QTLs) associated with the initial sensitivity to the effects of morphine in the A/J, C57BL/6J and AXB/BXA recombinant inbred strains of mice; (2) to identify potential commonalities in the chromosomal regions associated with morphine, cocaine and ethanol sensitivity using multiple‐trait genetic analysis and (3) to determine whether there were interstrain differences in dopamine uptake and transporter binding. Initial sensitivity to morphine was determined by measuring locomotor activity in a computerized open‐field apparatus following acute morphine administration (0, 10, 20 and 40 mg/kg). Significant differences in morphine‐induced activation were observed across the panel of AXB/BXA mice. Genetic analysis found significant QTLs on chromosomes 5, 7, 11, 12, 15 and 17 close to loci previously mapped for cocaine‐related behaviours and to parameters of dopaminergic functioning (uptake and receptor binding). Comparisons of the A/J vs. C57BL/6J progenitors found no strain differences for total dopamine uptake (Vmax or Km) in freshly prepared striatal synaptosomes from naive animals, and no differences in the IC50 for the inhibition of dopamine uptake by cocaine. In addition, there were no differences in dopamine transporter density (Bmax or Kd) measured using 3H‐GBR 12935 binding in synaptosomal membranes or via quantitative autoradiography. Multiple‐trait analysis was conducted to examine the genetic interrelationships among morphine‐, cocaine‐ and ethanol‐induced activation in the AXB/BXA. Analysis yielded suggestive QTLs for the joint trait on chromosomes 5, 8, 13 and 15, as well as significant regions on chromosomes 11 (Pmv46, 11 cM, LOD = 7.39) and 12 (D12Mit110, 19 cM, LOD = 4.43) that may be common to all three drugs of abuse.  相似文献   

10.
Recombinant inbred (RI) strains are a valuable tool in mouse genetics to rapidly map the location of a new locus. Because RI strains have been typed for hundreds of genetic markers, the genotypes of individual strains within an RI set can be examined to identify specific strain(s) containing the desired region(s) of interest (e.g., one or more quantitative trait loci, QTLs) for subsequent phenotype testing. Specific RI strains might also be identified for use as progenitors in the construction of consomic (chromosome substitution strains or CSSs) or congenic lines or for use in the RI strain test (RIST). To quickly identify the genetic contributions of the parental A/J (A) and C57BL/6J (B) strains, we have generated chromosome maps for each commercially available AXB and BXA RI strain, in which the genetic loci are colorcoded to signify the parent of origin. To further assist in strain selection for further breeding schemes, the percentages of A and B parental contributions were calculated, based on the total number of typed markers in the database for each strain. With these data, one can rapidly select the RI strain(s) carrying the desired donor and recipient strain region(s). Because points of recombination are known, starting with RI mice to generate CSSs or congenic lines immediately reduces genomewide screening to those donor-strain regions not already homozygous in the recipient strain. Two examples are presented to demonstrate potential uses of the generated chromosome maps: to select RI strains to construct congenic lines and to perform an RIST forAliq1, a QTL linked to ozone-induced acute lung injury survival.  相似文献   

11.
We present here the fine genetic mapping of the proximal part of mouse Chromosome (Chr) 12 between D12Mit54 and D12Mit4. This chromosomal region contains three loci, Pax9, Tcf3a, and Acrodysplasia (Adp), which seem to play an important role in pattern formation during mouse embryogenesis. The Adp mutation, which was created by transgene integration, causes skull, paw, and tail deformities. Pax9, which is expressed in the face, paws, and tail, once qualified as a possible candidate for the Adp locus. We analyzed 997 interspecific backcross progeny for recombination between the markers D12Mit54 and D12Mit4; we recovered 117 recombinants, which were further typed for Pax9, Tcf3a, Adp, D12Mit88, D12Nds1, D12Mit36, and D12Mit34. This study represents the first instance in which all the above loci have been included in a single analysis, thereby allowing unambiguous determination of the genetic order and distance between D12Mit54 and D12Mit4. From our results, we conclude that the Adp locus is distinct from either Pax9 or Tcf3a.  相似文献   

12.
The objective of the present study was to map quantitative trait loci (QTL) for alcohol intake using A × B/B × A recombinant inbred (RI) and AcB/BcA recombinant congenic (RC) strains of mice that were independently derived from the A/J and C57BL/6J progenitors. Mice were screened for levels of alcohol consumption with four days of forced exposure to alcohol, followed by three weeks of free choice between water and a 10% alcohol solution. Alcohol consumption data previously collected for 27 A × B/B × A RI strains were reanalyzed using a larger marker set and composite interval mapping. The reanalysis found markers on Chromosome 2 (D2Mit74, 107 cM) (males and females) and on Chromosome 11 (Pmv22, 8 cM) (females only) that exceeded the threshold for significant loci, and found suggestive loci (in males) on Chromosomes 10 (D10 Mit126, 21 cM), 12 (D12Mit37, 1 cM), 15 (Pdgfb, 46.8 cM), and 16 (D16Mit125, 29 cM). An additional suggestive locus was identified in female RI mice on Chromosome 11 (D11Mit120, 47.5 cM). Composite interval mapping (CIM) analysis indicated that there was a significant association between loci at Pdgfb and D2Mit74 in both males and females. Analysis of the AcB/BcA RC strains identified 11 QTL on Chromosomes 2, 3, 5,6, 7, 8, 9, 10, 12, 13, and 15. QTL on Chromosomes 7, 10, 12, and 15 were identified in both the A × B/B × A RI and AcB/BcA RC strains of mice. Additional QTLs identified on Chromosomes 2, 3, 7, 11, and 15 overlap with those previously identified in the literature using strains of mice with a C57BL/6J progenitor.  相似文献   

13.
The bronx waltzer (bv) mutation is an autosomal recessive mutation that is manifested as head tossing and circling in the mouse. The mutation affects the inner hair cells (IHCs) and pillar cells in the organ of Corti of the cochlea and the maculae and cristae of the vestibular part of the inner ear. IHCs begin to degenerate by a controlled mechanism of cell death as early as gestational day 17 (G17) in the basal coil of the cochlea, and few surviving IHCs are seen in the adult. As a first step towards the identification of bv, we analyzed a total of 20 loci in 118 mice from an intraspecific backcross giving the gene order: centromere–D5Mit1D5Mit73D5Mit55–[D5Mit12, Nds4 (Afp)]–D5Mit87–[D5Mit205, 20, 88, 208, 93D5Mit338]–D5Mit25D5Mit209bvD5Mit188D5Mit367D5Mit95D5Mit43D5Mit102. A total of 701 mice were then analyzed for the markers D5Mit93 and D5Mit95, defining a region of 12.08 cM flanking bv. Mice that were recombinant between D5Mit93 and D5Mit95 were analyzed for D5Mit338, D5Mit25, D5Mit209, bv, D5Mit188, and D5Mit367. bv maps 0.14 cM distal of the marker D5Mit209 and 1.14 cM proximal of the marker D5Mit188 in 701 backcross progeny. Received: 3 March 1997 / Accepted: 30 May 1997  相似文献   

14.

Background

Recombinant inbred (RI) strains of mice are an important resource used to map and analyze complex traits. They have proved particularly effective in multidisciplinary genetic studies. Widespread use of RI strains has been hampered by their modest numbers and by the difficulty of combining results derived from different RI sets.

Results

We have increased the density of typed microsatellite markers 2- to 5-fold in each of several major RI sets that share C57BL/6 as a parental strain (AXB, BXA, BXD, BXH, and CXB). A common set of 490 markers was genotyped in just over 100 RI strains. Genotypes of another ~1100 microsatellites were generated, collected, and error checked in one or more RI sets. Consensus RI maps that integrate genotypes of ~1600 microsatellite loci were assembled. The genomes of individual strains typically incorporate 45-55 recombination breakpoints. The collected RI set - termed the BXN set - contains approximately 5000 breakpoints. The distribution of recombinations approximates a Poisson distribution and distances between breakpoints average about 0.5 cM. Locations of most breakpoints have been defined with a precision of < 2 cM. Genotypes deviate from Hardy-Weinberg equilibrium in only a small number of intervals.

Conclusions

Consensus maps derived from RI strains conform almost precisely with theoretical expectation and are close to the length predicted by the Haldane-Waddington equation (X3.6 for a 2-3 cM interval between markers). Non-syntenic associations among different chromosomes introduce predictable distortions in QTL data sets that can be partly corrected using two-locus correlation matrices.  相似文献   

15.
Oligonucleotide primers of random sequence that were 12 bases in length, 58% in GC content, and lacking internal palindromes were designed. By random amplified polymorphic DNA (RAPD) PCR, these primers were used to survey for DNA variations between the progenitors of the mouse AXB and BXA recombinant inbred sets (A/J and C57BL/6J). We identified 17 DNA variants detected by 10 primers. Map positions for these variants were determined by comparing their strain distribution patterns in the AXB, BXA recombinant inbred sets with strain distribution patterns of previously published loci. When necessary, BXD and NXSM recombinant inbred sets were also used. These 17 new loci mapped to 12 chromosomes. The 10 primers were also used to survey 20 inbred mouse strains including the progenitors of other recombinant inbred sets and four mouse strains recently inbred from the wild (CAST/Ei, MOLF/Ei, PERA/Ei, and SPRET/Ei).  相似文献   

16.
Lipopolysaccharide (LPS) induces proliferation of splenic B-cells, and this response was found to be significantly lower in A/J than in C57BL/6J (B6) mice. Several strains and substrains mirrored the high and low responses of B6 and A/J. Assessment of 26 AXB/BXA recombinant inbred (RI) mouse strains identified 23 strains with a low (A/J-like), high (B6-like), or intermediate response. The three remaining RI strains exhibited a novel hyperresponsive phenotype significantly different from that of either founder strain. RI analysis identified four suggestive loci contributing to the LPS response, two of which were confirmed by analysis of congenic strains containing the donor genomic segment from a high- or low-responder strain on the opposite background. The combination of A/J and B6 alleles fixed to homozygosity at the four suggestive loci would occur in only 1 of 256 intercross progeny, but occurred several times among the RI strains.  相似文献   

17.
We present a linkage map of intracisternal A-particle (IAP) proviral loci. The IAP family consists of 2000 endogenous proviral elements that are widely dispersed in the mouse genome. The map was constructed by using an interspecific backcross and markers defined by oligonucleotide probes specific for subclasses of expressed IAP elements. In genomic DNA from C57BL/6J mouse, these probes each detected from 12 to 44 HindIII restriction fragments that represent junctions between proviral and 5-flanking DNA. The fragments have characteristic strain distribution patterns (SDPs) that are particularly polymorphic in the DNAs of C57BL/6J and Mus spretus mice used for the backcross. IAP loci were placed on the map by comparison of their distribution patterns with those of known genetic markers in the backcross. The map includes 51 IAP loci that have not been previously mapped and 23 IAP proviruses that had been previously mapped in recombinant inbred (RI) strains. Comparable map positions were obtained with the IAP markers in the interspecific backcross and the RI strains. The mapped IAP loci were widely dispersed on the X Chromosome (Chr) and all of the autosomes except Chrs 9 and 19, providing useful genetic markers for linkage studies.  相似文献   

18.
A chlorambucil (CHL)-induced mutation of thejcpk(juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involvingMus musculus castaneus, jcpkwas precisely mapped 0.2 cM distal toD10Mit115and 0.8 cM proximal toD10Mit173.In addition, five genes,Cdc2a, Col6a1, Col6a2, Bcr,andAnk3were mapped in both thisjcpkintercross and a (BALB/c × CAST/Ei)F1× BALB/c backcross. All five genes were eliminated as possible candidates forjcpkbased on the mapping data. Thejcpkintercross allowed the orientation of theAnk3gene relative to the centromere to be determined.D10Mit115, D10Mit173, D10Mit199,andD10Mit200were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in thejcpkintercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies.  相似文献   

19.
Mature DBA/2J (D2) mice are very sensitive to seizures induced by various chemical and physical stimuli, whereas C57BL/6J (B6) mice are relatively seizure resistant. We have conducted a genome-wide search for quantitative trait loci (QTLs) influencing the differential sensitivity of these strains to kainic acid (KA)-induced seizures by studying an F2 intercross population. Parental, F1, and F2 mice (8–10 weeks of age) were injected subcutaneously with 25 mg/kg of KA and observed for 3 h. Latencies to focal and generalized seizures and status epilepticus were recorded and used to calculate an overall seizure score. Results of seizure testing indicated that the difference in susceptibility to KA-induced seizures between D2 and B6 mice is a polygenic phenomenon with at least 65% of the variance due to genetic factors. First-pass genome screening (10-cM marker intervals) in F2 progeny (n = 257) documented a QTL of moderate effect on Chromosome (Chr) 1 with a peak LOD score of 5.5 (17% of genetic variance explained) localized between D1Mit30 and D1Mit16. Provisional QTLs of small effect were detected on Chr 11 (D11Mit224D11Mit14), 15 (D15Mit6D15Mit46) and 18 (D18Mit9D18Mit144). Multiple locus models generally confirmed the Mapmaker/QTL results and also provided evidence for another QTL on Chr 4 (D4Mit9). Multilocus analysis of seizure severity suggested that additional loci on Chrs 5 (D5Mit11), 7 (D7Mit66), and 15 (D15Nds2) might also contribute to KA-induced seizure response. Overall, our results document a complex genetic determinism for KA-induced seizures in these mouse strains with contributions from as many as eight QTLs. Received: 16 April 1996 / Accepted: 21 October 1996  相似文献   

20.
Variation in mandible shape has been investigated in a set of recombinant inbred (RI) lines of mice, the C57BL/6J X A/J (BXA;AXB) RI lines. Considerable genetic variation was detected between the RI lines, but most lines were intermediate in shape when compared with the parent lines. Variation in mandible shape could not be explained by any single gene differences known between the parent lines including the H-2 locus. Some RI lines had mandible shapes unlike either parent, and one in particular, line BXA1, had an unusual shape with a pronounced condyloid process. It was concluded that mandible shape has a complex inheritance involving a number of genes, each with small effects. In some cases, recombination of the genes can produce bone shapes quite different from those of the original parent line.--There was no evidence that the variability in steroid-induced cleft palate incidence in the BXA;AXB RI lines is related to the variation in adult mandible shape as detected in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号