首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5′ and 3′ hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5′ arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix+loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5′ and the 3′ arms of a miniribozyme containing an optimized sequence for helix+loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of genelength RNA substrates may be best achieved by miniribozymes.  相似文献   

2.
We obtained a partial sequence of mouse calretinin mRNA from cDNA clones, and designed hammerhead ribozymes to cleave positions within it. With a view to optimising hammerhead ribozymes for eliminating the mRNA in vivo, we varied the length and sequence of the three duplex 'arms' and measured the cleavage of long RNA substrates in vitro at 37 degrees C (as well as 50 degrees C). Precise cleavage occurred, but it could only go to completion with a large excess of ribozyme. The evidence suggests that the rate-limiting step with a large target is not the cleavage, but the formation of the active ribozyme: substrate complex. The efficiency varied unpredictably according to the target site, the length of the substrate RNA, and the length of the ribozyme; secondary structure in vitro may be responsible. We particularly investigated the degree of sequence-specificity. Some mismatches could be tolerated, but shortening of the total basepairing with the substrate to less than 14 bp drastically reduced activity, implying that interaction with weakly-matched RNAs is unlikely to be a serious problem in vivo. These results suggest that specific and complete cleavage of a mRNA in vivo should be possible, given high-level expression of a ribozyme against a favourable target site.  相似文献   

3.
Kinetic characterization of two I/II format hammerhead ribozymes.   总被引:2,自引:1,他引:1       下载免费PDF全文
Five new hammerhead ribozymes were designed that assemble through the formation of helices I and II (I/II format) instead of the more standard assembly through helices I and III (I/III format). The substrate binding and cleavage properties of such hammerheads could potentially be different due to the absence of loop II and the requirement for the entire catalytic core to assemble. Two I/II format hammerheads, HHalpha1 and HHalpha5, which show structural homogeneity on native gels, were characterized kinetically. The association rate constants of both I/II hammerheads are unusually slow compared to the rate of RNA duplex formation. The dissociation rate constants indicate that the hammerhead core destabilizes an uninterrupted RNA helix somewhat less than was observed for I/III hammerheads. Whereas the cleavage rate constant of HHalpha5 is similar to that observed for I/III hammerheads, HHalpha1 cleaves 10-fold faster than any hammerhead previously reported. The temperature and pH dependence of the cleavage rate constant of HHalpha1 are similar to those reported for I/III hammerheads, suggesting a similar mechanism of cleavage.  相似文献   

4.
Chimeras of the well-characterized minimal hammerhead 16 and nine extended hammerheads derived from natural viroids and satellite RNAs were constructed with the goal of assessing whether their very different peripheral tertiary interactions modulate their catalytic properties. For each chimera, three different assays were used to determine the rate of cleavage and the fraction of full-length hammerhead at equilibrium and thereby deduce the elemental cleavage ( k 2) and ligation ( k -2) rate constants. The nine chimeras were all more active than minimal hammerheads and exhibited a very broad range of catalytic properties, with values of k 2 varying by 750-fold and k -2 by 100-fold. At least two of the hammerheads exhibited an altered dependence of k obs on magnesium concentration. Since much less catalytic diversity is observed among minimal hammerheads that lack the tertiary interactions, a possible role for the different tertiary interaction is to modulate the hammerhead cleavage properties in viroids. For example, differing hammerhead cleavage and ligation rates could affect the steady state concentrations of linear, circular, and polymeric genomes in infected cells.  相似文献   

5.
BACKGROUND: Ribozymes can function as allosteric enzymes that undergo a conformational change upon ligand binding to a site other than the active site. Although allosteric ribozymes are not known to exist in nature, nucleic acids appear to be well suited to display such advanced forms of kinetic control. Current research explores the mechanisms of allosteric ribozymes as well as the strategies and methods that can be used to create new controllable enzymes. RESULTS: In this study, we exploit the modular nature of certain functional RNAs to engineer allosteric ribozymes that are activated by flavin mononucleotide (FMN) or theophylline. By joining an FMN- or theophylline-binding domain to a hammerhead ribozyme by different stem II elements, we have identified a minimal connective bridge comprised of a G.U wobble pair that is responsive to ligand binding. Binding of FMN or theophylline to its allosteric site induces a conformational change in the RNA that stabilizes the wobble pair and ultimately favors the active form of the catalytic core. These ligand-sensitive ribozymes exhibit rate enhancements of more than 100-fold in the presence of FMN and of approximately 40-fold in the presence of theophylline. CONCLUSIONS: An adaptive strategy for modular rational design has proven to be an effective approach to the engineering of novel allosteric ribozymes. This strategy was used to create allosteric ribozymes that function by a mechanism involving ligand-induced structure stabilization. Conceivably, similar engineering strategies and allosteric mechanisms could be used to create a variety of novel allosteric ribozymes that function with other effector molecules.  相似文献   

6.
7.
8.
9.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

10.
Mortalin, also known as mot2/mthsp70/GRP75/PBP74, is a member of the heat-shock protein 70 family that is heat-uninducible. It is differentially distributed in cells that have normal and immortal phenotypes, has been localized to various subcellular sites, and has several binding partners and functions. Here, we describe the construction and use of mortalin-specific conventional and hybrid ribozymes to elucidate its crucial role in cell proliferation. Whereas conventional hammerhead ribozymes did not cause any repression of endogenous mortalin expression, RNA-helicase-linked hybrid ribozymes successfully suppressed the expression of mortalin, which resulted in the growth arrest of transformed human cells. We show that, first, RNA helicase-coupled hybrid ribozymes that have a linked unwinding activity can be used to target genes for which conventional hammerhead ribozymes are ineffective; second, the targeting of mortalin by RNA-helicase-coupled hybrid ribozymes causes growth suppression of transformed human cells and could be used as a treatment for cancer.  相似文献   

11.
In vitro activity of minimised hammerhead ribozymes.   总被引:2,自引:2,他引:0       下载免费PDF全文
A number of minimised hammerhead ribozymes (minizymes) which lack stem II have been kinetically characterised. These minizymes display optimal cleavage activity at temperatures around 37 degrees C. The cleavage reactions of the minizymes are first order in hydroxide ion concentration up to around pH 9.3 above which the cleavage rate constants decline rapidly. The reactions show a biphasic dependence on magnesium-ion concentration; one of the interactions has an apparent dissociation constant of around 20 mM while the other appears to be very weak, showing no sign of saturation at 200 mM MgCl2. The minizymes are significantly less active than comparable, full-size ribozymes when cleaving short substrates. However, at a particular site in a transcribed TAT gene from HIV-1, minizymes are more effective than ribozymes.  相似文献   

12.
Hammerhead ribozymes were synthesized in which the tetranucleotide loop II was replaced by non-nucleotidic linkers of 7, 13, 17 and 19 atoms length. Ribozymes with 17 and 19 atom linkers, in combination with a 4 base pair stem II, had catalytic efficiencies which were 2 fold increased to that of the parent ribozyme with a tetranucleotide loop. Ribozymes with these linkers, but in combination with a 2 base pair stem II, showed a 2 fold decrease in catalytic efficiency when compared to the parent ribozyme. Prolonged preincubation in the presence of MgCl2 was required for hexaethylene glycol linker-modified ribozymes to obtain maximum activity and reproducible kinetic data.  相似文献   

13.
Kinetics of intermolecular cleavage by hammerhead ribozymes.   总被引:30,自引:0,他引:30  
M J Fedor  O C Uhlenbeck 《Biochemistry》1992,31(48):12042-12054
The hammerhead catalytic RNA effects cleavage of the phosphodiester backbone of RNA through a transesterification mechanism that generates products with 2'-3'-cyclic phosphate and 5'-hydroxyl termini. A minimal kinetic mechanism for the intermolecular hammerhead cleavage reaction includes substrate binding, cleavage, and product release. Elemental rate constants for these steps were measured with six hammerhead sequences. Changes in substrate length and sequence had little effect on the rate of the cleavage step, but dramatic differences were observed in the substrate dissociation and product release steps that require helix-coil transitions. Rates of substrate binding and product dissociation correlated well with predictions based on the behavior of simple RNA duplexes, but substrate dissociation rates were significantly faster than expected. Ribozyme and substrate alterations that eliminated catalytic activity increased the stability of the hammerhead complex. These results suggest that substrate destabilization may play a role in hammerhead catalysis.  相似文献   

14.
ABSTRACT

Hammerhead ribozymes are a model system for studying molecular mechanism of RNA catalysis. Physicochemical data-driven mechanistic studies are an indispensable step towards understanding the catalysis of hammerhead ribozymes. Here we characterized a model RNA duplex with catalytically important sheared-type G12-A9 base pair and A9-G10.1 metal ion-binding motif in hammerhead ribozymes. By using high magnetic field NMR, all base proton signals, including catalytic residues, were unambiguously assigned. We further characterized structural features of this RNA molecule and found that it reflects the structural features of the A9-G10.1 motif of hammerhead ribozymes. Therefore, this RNA molecule is suitable for extracting an intrinsic physicochemical properties of catalytically important residues.  相似文献   

15.
In vivo decay kinetic parameters of hammerhead ribozymes.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

16.
Variants of trans-acting hammerhead ribozymes were modified with Locked Nucleic Acid (LNA) nucleotides to reduce their size, to improve access to their RNA target and to explore combinational properties of binary constructs. Using low Mg(2+) concentrations and low substrate and ribozyme concentrations, it was found that insertion of LNA monomers into the substrate binding arms allowed these to be shortened and results in a very active enzyme under both single and multiple turnover conditions. Incorporation of a mix of LNA and DNA residues further increased the multiple turnover cleavage activity. At high Mg(2+) concentrations or high substrate and ribozyme concentrations, the enhancing effect of LNA incorporation was even more prominent. Using LNA in the stem of Helix II diminished cleavage activity, but allowed deletion of the tetra-loop and thus separating the ribozyme into two molecules with each half binding to the substrate. Efficient, binary hammerhead ribozymes were pursued in a combinatorial approach using a 6-times 5 library, which was analysed concerning the best combinations, buffer conditions and fragment ratios.  相似文献   

17.
Cleavage of full-length beta APP mRNA by hammerhead ribozymes.   总被引:6,自引:3,他引:3       下载免费PDF全文
  相似文献   

18.
The incorporation of 1-deazaadenosine (c1A, 1b) into a hammerhead ribozyme and the resulting catalytic activity is described. For this purpose the phosphoramidite 2a and the 3'-phosphonate 2b as well as Fractosil-linked 1-deazaadenosine (3b) were prepared. The methoxyacetyl group was used for the 6-amino group protection and the triisopropylsilyl residue was introduced as the 2'-OH protecting group. Replacement of residues A14and A15.1 of the hammerhead ribozyme by 1-deazaadenosine resulted in a significantly reduced catalytic activity. Substitution of the A6, A9 and A13 residues has only a minor influence. The findings observed on ribozymes modified with 1-deazaadenosine were compared with those containing other adenosine analogues.  相似文献   

19.
In established methods for analyzing ribozyme kinetics, radiolabeled RNA substrates are primarily used. Each data point requires the cumbersome sampling, gel electrophoretic separation, and quantitation of reaction products, apart from the continuous loss of substrate by radioactive decay. We have used stable, double fluorescent end-labeled RNA substrates. Fluorescence of one fluorophore is quenched by intramolecular energy transfer (FRET). Upon substrate cleavage, both dyes become separated in two RNA products and fluorescence is restored. This can be followed in real time and ribozyme reactions can be analyzed under multiple (substrate excess) and under single (ribozyme excess) turnover conditions. A detailed comparison of unlabeled, single, and double fluorescent-labeled RNAs revealed moderate kinetic differences. Results with two systems, hammerhead ribozymes in I/II (small ribozyme, large substrate) and in I/III format (large ribozyme, small substrate), are reported.  相似文献   

20.
Proliferation of vascular smooth muscle cells is generally accepted as a key event in the development of restenosis following percutaneous transluminal angioplasty. To prevent human restenosis, we have designed a molecular strategy based on hammerhead ribozymes targeted against the mRNA of cyclin E and E2F1, two proteins relevant in cell cycle progression whose regulation is interconnected by a positive feedback loop. Following the identification of accessible ribozyme target sites by RNase H mapping, several hammerhead ribozymes were generated that cleave with comparable efficiency two different splice forms of cyclin E mRNA and the full-length and a truncated form of E2F1 RNA, respectively. The most active ribozymes were tested in vitro under single-turnover conditions yielding k(react)/K(m) ratios between 36 and 73 x 10(4) M(-1) min(-1), which places them in the top range ribozymes targeted against long and structured substrates. In addition, we show that the most active ribozyme selected in vitro reduces specifically and significantly (p < 0.0028) proliferation of cultured human vascular smooth muscle cells (VSMC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号