首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A high-performance liquid chromatographic assay for O6-benzylguanine utilizing liquid-liquid extraction and reversed-phase chromatography has been developed. Plasma samples were alkalinized, extracted into ethyl acetate, evaporated, and the residues were constituted and chromatographed. Separation was accomplished by gradient elution with a mobile phase of methanol, acetonitrile, and phosphate buffer, pH 3.2. Eluted compounds were detected spectrophotometrically at 280 nm. Sample quantitation was obtained from the regression line of six-point standard curves ranging from 25 to 400 ng/ml. O6-Benzylguanine peak heights were compared to peak heights of O6-(p-chlorobenzyl)guanine (internal standard). The average regression coefficient was 0.999 (n = 4). High concentration (305 ng/ml) and low concentration (38 ng/ml) quality control samples were determined with a day-to-day relative standard deviation of 7 and 8%, respectively (n = 18). The within-day relative standard deviations were 2.7 and 3.0% (n = 18) for the high and low concentration quality control specimens, respectively. Sample quantitation was reliable to 25 ng/ml with a signal-to-noise ratio of 8:1. This method was applied to plasma samples obtained from patients in a clinical trial of O6-benzylguanine.  相似文献   

2.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

3.
An assay for the simultaneous quantitative determination of thioTEPA, TEPA and the recently identified metabolite N,N′-diethylene-N″-2-chloroethylphosphoramide (monochloroTEPA) in human urine has been developed. MonochloroTEPA was synthesized by incubation of TEPA with sodium chloride at pH 8. Thus, with this assay monochloroTEPA is quantified as TEPA equivalents. Analysis of the three analytes in urine was performed using gas chromatography with selective nitrogen–phosphorous detection after extraction with a mixture of 1-propanol and chloroform from urine samples. Diphenylamine was used as internal standard. Recoveries ranged between 70 and 100% and both accuracy and precision were less than 15%. Linearity was accomplished in the range of 25–2500 ng/ml for monochloroTEPA and 25–5000 ng/ml for thioTEPA and TEPA. MonochloroTEPA proved to be stable in urine for at least 4 weeks at −80°C. ThioTEPA, TEPA and monochloroTEPA cummulative urinary excretion from two patients treated with thioTEPA are presented demonstrating the applicability of the assay for clinical samples and that the excreted amount of monochloroTEPA exceeded that of thioTEPA on day 2 to 5 of urine collection.  相似文献   

4.
An electron-capture gas chromatographic procedure was developed for the analysis of p-trifluoromethylphenol, an O-dealkylated metabolite of fluoxetine, in biological samples. A basic extraction of the biological sample was employed, followed by derivatization with pentafluorobenzenesulfonyl chloride. The internal standard, 2,4-dichlorophenol, was added to all samples used in the procedure to aid in quantitation. The practical limit of detection (signal-to-noise ratio>3) for p-trifluoromethylphenol was <5 ng/ml in human plasma samples, <10 ng/g of rat brain tissue, <25 ng/g of rat liver tissue and <25 ng/ml in human and rat urine samples. In the rat, the levels of free p-trifluoromethylphenol in the liver were 10-fold higher than those in the brain, and a substantial amount was excreted in the urine. Human urine samples contained levels of free p-trifluoromethylphenol approximately 30-fold higher than those found in human plasma samples. The procedure described is useful for the detection and quantitation of free p-trifluoromethylphenol in humans and rats treated with fluoxetine.  相似文献   

5.
A method was developed for the separation and quantification of the insecticide chlorpyrifos (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphorothioate), its metabolites chlorpyrifos-oxon (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphate) and TCP (3,5,6-trichloro-2-pyridinol), the anti-nerve agent drug pyridostigmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide), its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), and its metabolites m-toluamide and m-toluic acid in rat plasma and urine. The method is based on using solid-phase extraction and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 210 and 280 nm. The compounds were separated using a gradient of 1–85% acetonitrile in water (pH 3.20) at a flow-rate ranging between 1 and 1.7 ml/min over a period of 15 min. The retention times ranged from 5.4 to 13.2 min. The limits of detection ranged between 20 and 150 ng/ml, while the limits of quantitation were between 150 and 200 ng/ml. Average percentage recovery of five spiked plasma samples was 80.2±7.9, 74.9±8.5, 81.7±6.9, 73.1±7.8, 74.3±8.3, 80.8±6.6, 81.6±7.3 and 81.4±6.5, and from urine 79.4±6.9, 77.8±8.4, 83.3±6.6, 72.8±9.0, 76.3±7.7, 83.4±7.9, 81.6±7.9 and 81.8±6.8 for chlorpyrifos, chlorpyrifos-oxon, TCP, pyridostigmine bromide, N-methyl-3-hydroxypyridinium bromide, DEET, m-toluamide and m-toluic acid, respectively. The relationship between peak areas and concentration was linear over a range between 200 and 2000 ng/ml.  相似文献   

6.
A simple extraction procedure and a sensitive high-performance liquid chromatographic (HPLC) method are described for the determination of the photodynamic therapeutic agent 5, 10, 15, 20-tetra(m-hydroxyphenyl)chlorin (mTHPC) in plasma and tumour tissue. Reversed-phase high-performance liquid chromatography was performed on a C18 column (70×4.6 mm I.D.) with a mobile phase of 0.01 M potassium dihydrogenphosphate buffer, pH 2.5-acetonitrile (55:45, v/v) and a coulometric detection (+0.80 V). The mean recoveries of mTHPC in the concentration ranges (5–2000 and 10–1000 ng/ml) were 90 and 89% for plasma and tumour samples, respectively. The procedure for plasma and tissue preparation involved solvent precipitation using methanol combined with ammonia solution and dimethyl sulphoxide (4, 0.2, 0.1, v/v/v) and (2, 0.1, 0.1, v/v/v) for plasma and tissue, respectively. For mTHPC at concentrations ranging from 5 to 2000 ng/ml, the within-day relative standard deviations, based on triplicate determinations were less than 8% and the between-day relative standard deviations calculated by performing extraction procedure of plasma samples on three different days ranged from 3 to 18%. This highly sensitive method, 5 and 10 ng/ml for plasma and tissue respectively, was applied successfully to the determination of mTHPC in mouse tumours for pharmacokinetic studies.  相似文献   

7.
(E)-5-(2-Bromovinyl)-2′-deoxyuridine is an antiviral drug used for treatment of infections with Herpes simplex virus type 1 as well as Varicella zoster virus. Two fast methods for the determination of the drug and its metabolite in plasma and urine by capillary electrophoresis have been developed. The plasma method can be used for measurement of total as well as unbound drug and metabolite. Plasma and urine samples are prepared for measuring by liquid/liquid extraction resulting in a limit of quantification of 40 ng/ml for total and 10 ng/ml for free BVdU in plasma and 170 ng/ml in urine. Inter- as well as intra-day precision were found to be better than 10% and both methods have been used for drug monitoring of patients.  相似文献   

8.
A method that allows the measurement of plasma and brain levels of the centrally-acting analgesic tramadol and its major metabolite (O-desmethyl tramadol) in mice and rats was developed using gas chromatography equipped with nitrogen–phosphorus detection (GC–NPD). Plasma samples were extracted with methyl tert.-butyl ether (MTBE) and were injected directly into the GC system. Brain tissue homogenates were precipitated with methanol, the resulting supernatant was dried then acidified with hydrochloric acid. The aqueous solution was washed with MTBE twice, alkalinized, and extracted with MTBE. The MTBE layer was dried, reconstituted and injected into the GC system. The GC assay used a DB-1 capillary column with an oven temperature ramp (135 to 179°C at 4°C/min). Dextromethorphan was used as the internal standard. The calibration curves for tramadol and O-desmethyl tramadol in plasma and brain tissue were linear in the range of 10 to 10 000 ng/ml (plasma) and ng/g (brain). Assay accuracy and precision of back calculated standards were within ±15%.  相似文献   

9.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

10.
A sensitive and selective high-performance liquid chromatographic (HPLC) method was developed for the determination of pramipexole in human plasma and urine. Plasma/urine is made alkaline before pramipexole and BHT-920 (internal standard) are extracted by ethyl ether and back-extracted with a solution that contains heptanesulfonic acid. Separation is achieved by ion-pair chromatography on a Zorbax Rx C8 column with electrochemical detection at 0.6 V for plasma and ultraviolet detection at 286 nm for urine. The retention times of pramipexole and internal standard are approximately 14.4 and 10.7 min, respectively. The assay is linear in concentration ranges of 50 to 15 000 pg/ml (plasma) and 10 to 10 000 ng/ml (urine). The correlation coefficients are greater than 0.9992 for all curves. For the plasma method, the analysis of pooled quality controls (300, 3000, and 10 000 pg/ml) demonstrates excellent precision with relative standard deviations (R.S.D.) (n=18) of 1.1%, 2.3%, and 6.8%, respectively. For the urine method, quality control pools prepared at 30, 300, and 3000 ng/ml had R.S.D. values (n=18) of 2.9%, 1.7%, and 3.0%, respectively. The plasma and urine controls were stable for more than nine and three months, respectively. The mean recoveries for pramipexole and internal standard from plasma were 97.7% and 98.2%, respectively. The mean recoveries for pramipexole and internal standard from urine were 89.8% and 95.1%, respectively. The method is accurate with all intra-day (n=6) and overall (n=18) mean values for the quality control samples being less than 6.4 and 5.8% from theoretical for plasma and urine, respectively.  相似文献   

11.
An isocratic reversed-phase high-performance liquid chromatographic method for the simultaneous determination of denaverine and its N-monodemethyl metabolite (MD 6) in human plasma is described. The assay involves the extraction with an n-heptane–2-propanol mixture (9:1, v/v) followed by back extraction into 12.5% (w/w) phosphoric acid. The analytes of interest and the internal standard were separated on a Superspher RP8 column using a mobile phase of acetonitrile–0.12 M NH4H2PO4–tetrahydrofuran (24:17.2:1, v/v), adjusted to pH 3 with 85% (w/w) phosphoric acid. Ultraviolet detection was used at an operational wavelength of 220 nm. The retention times of MD 6, denaverine and the internal standard were 5.1, 6.3 and 10.2 min, respectively. The assay was validated according to international requirements and was found to be specific, accurate and precise with a linear range of 2.5–150 ng/ml for denaverine and MD 6. Extraction recoveries for denaverine and MD 6 ranged from 44 to 49% and from 42 to 47%, respectively. The stability of denaverine and MD 6 in plasma was demonstrated after 24 h storage at room temperature, after three freeze–thaw cycles and after 7 months frozen storage below −20°C. The stability of processed samples in the autosampler at room temperature was confirmed after 24 h storage. The analytical method has been applied to analyses of plasma samples from a pharmacokinetic study in man.  相似文献   

12.
A rapid and simple method was developed for the separation and quantification of the anti nerve agent drug pyridostignmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), its metabolites m-toluamide and m-toluic acid, the insecticide permethrin (3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid(3-phenoxyphenyl)methylester), and two of its metabolites m-phenoxybenzyl alcohol, and m-phenoxybenzoic acid in rat plasma and urine. The method is based on using C18 Sep-Pak® cartridges for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 208 and 230 nm. The compounds were separated using gradient of 1 to 99% acetonitrile in water (pH 3.20) at a flow-rate ranging between 0.5 and 1.7 ml/min in a period of 17 min. The retention times ranged from 5.7 to 14.5 min. The limits of detection were ranged between 20 and 100 ng/ml, while limits of quantitation were 150–200 ng/ml. Average percentage recovery of five spiked plasma samples were 51.4±10.6, 71.1±11.0, 82.3±6.7, 60.4±11.8, 63.6±10.1, 69.3±8.5, 68.3±12.0, 82.6±8.1, and from urine 55.9±9.8, 60.3±7.4, 77.9±9.1, 61.7±13.5, 68.6±8.9, 62.0±9.5, 72.9±9.1, and 72.1±8.0, for pyridostigmine bromide, DEET, permethrin, N-methyl-3-hydroxypyridinium bromide, m-toluamide, m-toluic acid, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, respectively. The relationship between peak areas and concentration was linear over the range between 100 and 5000 ng/ml. This method was applied to analyze the above chemicals and metabolites following their administration in rats.  相似文献   

13.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

14.
M. Kimoto  H. Tsuji  T. Ogawa 《Amino acids》1994,6(3):273-282
Summary The metabolic significance ofN G ,N G -dimethyl-l-arginine (DMA) as a precursor of endogenous dimethylamine (DMN) in rats was examined in connection with the wide distribution and active operation of dimethylargininase (EC3.5.3.18) in rat tissues (Kimoto et al., 1993). When [methyl-14C]DMA was administered intraperitoneally to rats, the radioactive DMN was detected in various tissues as a major radioactive metabolite one hour after injection, and about 65% of the radioactivity administered was recovered in the first 12-h urine as DMN. In the case of the [14C] DMN-injected rats, almost all the radioactivity was excreted in the 12-h urine as DMN, except for a negligible amount of radioactivity found in urea. The time-dependent decrease in the specific radioactivity of DMA and DMN in urine showed that dimethylargininase was significantly involved in thein vivo formation of DMN by the hydrolytic cleavage of DMA released from methylated proteins and that DMA is a dominant precursor of endogenous DMN in rats.  相似文献   

15.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the simultaneous determination of epirubicin, 13-S-dihydroepirubicin, doxorubicin and 13-S-dihydrodoxorubicin in human plasma. An aliquot of 200 μl plasma, spiked with internal standard, was extracted by solid-phase extraction using polymeric adsorbent columns. Chromatography was performed using a C18 reversed-phase column with a mobile phase consisting of water–acetonitrile (71:29, v/v) containing 0.05 M Na2HPO4 and 0.05% v/v triethylamine adjusted to pH 4.6 with citric acid. Linearity of the method was obtained in the concentration range of 1–500 ng/ml for all the analytes. Analytical recoveries of the analytes ranged from 89 to 93%. The assay can be used for the simultaneous determination of the four analytes, or for epirubicin and its metabolite or doxorubicin and its metabolite, using the other parent drug as an internal standard. The method was applied to analyze human plasma samples from patients treated with epirubicin using doxorubicin as an internal standard.  相似文献   

16.
[Arg6, -Trp7,9, mePhe8]-substance P (6–11), code-named antagonist G, is a novel peptide currently undergoing early clinical trials as an anticancer drug. A sensitive, high efficiency high-performance liquid chromatography (HPLC) method is described for the determination in human plasma of antagonist G and its three major metabolites, deamidated-G (M1), G-minus Met11 (M2) and G[Met11(O)] (M3). Gradient elution was employed using 40 mM ammonium acetate in 0.15% trifluoroacetic acid as buffer A and acetonitrile as solvent B, with a linear gradient increasing from 30 to 100% B over 15 min, together with a microbore analytical column (μBondapak C18, 30 cm×2 mm I.D.). Detection was by UV at 280 nm and the column was maintained at 40°C. Retention times varied by <1% throughout the day and were as follows: G, 13.0 min; M1, 12.2 min; M2, 11.2 min; M3, 10.8 min, and 18.1 min for a pyrene conjugate of G (G–P). The limit of detection on column (LOD) was 2.5 ng for antagonist G, M1–3 and G–P and the limit of quantitation (LOQ) was 20 ng/ml for G and 100 ng/ml for M1–3. Sample clean-up by solid-phase extraction using C2-bonded 40 μm silica particles (Bond Elut, 1 ml reservoirs) resulted in elimination of interference from plasma constituents. Within-day and between-day precision and accuracy over a broad range of concentrations (100 ng/ml–100 μg/ml) normally varied by <10%, although at the highest concentrations of M1 and M2 studied (50 μg/ml), increased variability and reduced recovery were observed. The new assay will aid in the clinical development of antagonist G.  相似文献   

17.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

18.
An enantioselective high-performance liquid chromatography method was developed for the simultaneous determination of disopyramide (DP) and mono-N-dealkyldisopyramide (MND) enantiomers in plasma and urine. The drugs were extracted from plasma samples by liquid–liquid extraction with dichloromethane after protein precipitation with trichloroacetic acid; the urine samples were processed by liquid–liquid extraction with dichloromethane. The enantiomers were resolved on a Chiralpak AD column using hexane–ethanol (91:9, v/v) plus 0.1% diethylamine as the mobile phase and monitored at 270 nm. Under these conditions the enantiomeric fractions of the drug and of its metabolite were analyzed within 20 min. The extraction procedure was efficient in removing endogenous interferents and low values for the relative standard deviations were demonstrated for both within-day and between-day assays. The method described in this paper allows the determination of DP and MND enantiomers at plasma levels as low as 12.5 ng/ml and can be used in clinical pharmacokinetic studies.  相似文献   

19.
Solid-phase extraction (SPE) method was developed for the preconcentration of Cu2+ and Ni2+ before their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Bacillus subtilis–immobilized Amberlite XAD-16 was used as biosorbent. Effects of critical parameters such as pH, flow rate of samples, amount of Amberlite XAD-16 and biosorbent, sample volume, eluent type, and volume and concentration of eluent on column preconcentration of Cu2+ and Ni2+ were optimized. Applicability of the method was validated through the analysis of the certified reference tea sample (NCS ZC73014). Sensitivity of ICP-OES was improved by 36.4-fold for Cu2+ and 38.0-fold for Ni2+ by SPE-ICP-OES method. Limit of quantitation (LOQ) was found to be 0.7 and 1.1 ng/ml for Cu2+ and Ni2+, respectively. Concentrations of Cu2+ and Ni2+ were determined by ICP-OES after application of developed method. Relative standard deviations (RSDs) were lower than 4.9% for Cu2+ and 7.9% for Ni2+. The Tigris River that irrigates a large agricultural part of Southeast Turkey is polluted by domestic and industrial wastes. Concentrations of Cu2+ and Ni2+ were determined in water, soil, and some edible vegetables as a biomonitor for heavy metal pollution.  相似文献   

20.
We report here the development and validation of an LC–MS method for quantitation of loperamide (LOP) and its N-demethyl metabolite (DMLOP) in human plasma. O-Acetyl-loperamide (A-LOP) was synthesized by us for use as an internal standard in the assay. After addition of the internal standard, the compounds of interest were extracted with methyl tert.-butylether and separated by HPLC on a C18 reversed-phase column using an acetonitrile–water gradient containing 20 mM ammonium acetate. The three compounds were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in plasma. Analytes were quantitated using positive electrospray ionization in a triple quadrupole mass spectrometer operating in the MS–MS mode. Selected reaction monitoring was used to quantify LOP (m/z 477→266), DMLOP (m/z 463→252) and A-LOP (m/z 519→266) on ions formed by loss of the 4-(p-chlorophenyl)-4-hydroxy-piperidyl group upon low energy collision-induced dissociation. Calibration curves, which were linear over the range 1.04 to 41.7 pmol/ml (LOP) and 1.55 to 41.9 pmol/ml (DMLOP), were run contemporaneously with each batch of samples, along with low (4.2 pmol/ml), medium (16.7 pmol/ml) and high (33.4 pmol/ml) quality control samples. The lower limit of quantitation (LLQ) of LOP and DMLOP was about 0.25 pmol/ml in plasma. The extraction efficiency of LOP and DMLOP from human plasma was 72.3±1.50% (range: 70.7–73.7%) and 79.4±12.8% (64.9–88.8%), respectively. The intra- and inter-assay variability of LOP and DMLOP ranged from 2.1 to 14.5% for the low, medium and high quality control samples. The method has been used successfully to study loperamide pharmacokinetics in adult humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号