首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study a total of 167 isolates collected from different food materials (68.8% from sorghum and the remaining from various other food materials) were assayed by PCR for amplification of the tri 5 gene present in trichothecene-producing Fusaria. Amplification of the tri 5 fragment was observed in 45 isolates (39 isolates from sorghum and 6 isolates from vegetables). Isolates found positive for presence of the tri 5 gene were classified into different morphological groups based on their cultural and conidial characters; 11 of the tri 5 positive isolates from moldy grains of sorghum, one from each morphology group were selected for further analyses. Five deoxynivalenol producers and three deoxynivalenol and Fusarenon-X producers were detected by analysing culture filtrates of the 11 isolates using GC-MS. One isolate each were identified as producers of NIV alone, or NIV along with DON or DAS toxins. Identification of these isolates to the species level was carried out using spore morphology and sequence comparison of the translation elongation factor 1-alpha (EF-1α) gene against the database as well as using phylogenetic analyses. The isolates were identified as Fusarium proliferatum (6), F. nelsonii (2), F. equiseti (1), F. thapsinum (1) and F. sacchari (1). Amplified Fragment Length Polymorphism (AFLP) based grouping clustered the isolates of same species together. This is the first detailed study of trichothecene production by Fusarium spp. associated with sorghum grain mold in India and the identification of F. nelsonii and F. thapsinum as producers of trichothecenes.  相似文献   

2.
A total of 57 samples of feedstuffs commonly used for animal nutrition in Colombia (corn, soybean, sorghum, cottonseed meal, sunflower seed meal, wheat middlings and rice) were analyzed for Fusarium contamination. Fusarium fungi were identified at species level by means of conventional methods and the ability to produce fumonisins of the most prevailing species was determined. A total of 41 of the feedstuffs analyzed (71.9%) were found to contain Fusarium spp. Most contaminated substrates were corn (100%), cottonseed meal (100%), sorghum (80%), and soybean (80%). Wheat middlings and rice showed lower levels of contamination (40% and 20%, respectively), while no Fusarium spp. could be isolated from sunflower seed meal. The most prevalent species of Fusarium isolated were F. verticilliodes (70.8%), F.␣proliferatum (25.0%), and F. subglutinans (4.2%). All of them correspond to section Liseola.Production of fumonisins on corn by the isolated Fusarium was screened through liquid chromatography. Almost all strains of F. verticilliodes (97.1%) produced FB1 (5.6–25,846.4 mg/kg) and FB2 (3.4–7507.5 mg/kg). Similarly, almost all strains of F.␣proliferatum (91.7%) produced fumonisins but at lower levels than F.␣verticilliodes (FB1 from 6.9 to 3885.0 mg/kg, and FB2 from 34.3 to 373.8 mg/kg), while F. subglutinans did not produce these toxins. This is the first study in Colombia describing toxigenic Fusarium isolates from␣animal feedstuffs.  相似文献   

3.
Fusarium species belonging to the Fusarium fujikuroi species complex (FFSC) are associated with maize in northern Mexico and cause Fusarium ear and root rot. In order to assess the diversity of FFSC fungal species involved in this destructive disease in Sinaloa, Mexico, a collection of 108 fungal isolates was obtained from maize plants in 2007–2011. DNA sequence analysis of the calmodulin and elongation factor 1α genes identified four species: Fusarium verticillioides, F. nygamai, F. andiyazi and F. thapsinum (comprising 79, 23, 4 and 2 isolates, respectively). Differential distribution of Fusarium species in maize organs was observed, that is F. verticillioides was the most frequently isolated species from maize seeds, while F. nygamai predominated on maize roots. Mixed infections with F. verticillioides/F. thapsinum and F. verticillioides/F. nygamai were detected in maize seeds and roots, respectively. Pathogenicity assay demonstrated the ability of the four species to infect maize seedlings and induce different levels of disease severity, reflecting variation in aggressiveness, plant height and root biomass. Isolates of F. verticillioides and F. nygamai were the most aggressive. These species were able to colonize all root tissues, from the epidermis to the vascular vessels, while infection by F. andiyazi and F. thapsinum was restricted to the epidermis and adjacent cortical cells. This is the first report of F. nygamai, F. andiyazi and F. thapsinum infecting maize in Mexico and co‐infecting with F. verticillioides. Mixed infections should be taken into consideration due to the production and/or accumulation of diverse mycotoxins in maize grain.  相似文献   

4.
Fusarium species can produce fumonisins (FBs), fusaric acid, beauvericin (BEA), fusaproliferin (FUS) and moniliformin. Data on the natural occurrence of FBs have been widely reported, but information on BEA and FUS in maize is limited. The aims of this study were to establish the occurrence of Fusarium species in different maize hybrids in Mexico, to determine the ability of Fusarium spp. isolates to produce BEA, FUS and FBs and their natural occurrence in maize. Twenty-eight samples corresponding to seven different maize hybrids were analyzed for mycobiota and natural mycotoxin contamination by LC. Fusarium verticillioides was the dominant species (44–80%) followed by F. subglutinans (13–37%) and F. proliferatum (2–16%). Beauvericin was detected in three different hybrids with levels ranging from 300 to 400 ng g−1, while only one hybrid was contaminated with FUS (200 ng g−1). All samples were positive for FB1 and FB2 contamination showing levels up to 606 and 277 ng g−1, respectively. All F. verticillioides isolates were able to produce FB1 (13.8–4,860 μg g−1) and some also produced FB2 and FUS. Beauvericin, FUS, FB1 and FB2 were produced by several isolates including F. proliferatum and F. subglutinans and co-production was observed. This is the first report on the co-occurrence of these toxins in maize samples from Mexico. The analysis of the presence of multiple mycotoxins in this substrate is necessary to understand the significance of these compounds in the human and animal food chains.  相似文献   

5.
The contamination of cereals with mycotoxins produced by species ofFusarium is an important risk to human and animal health. The toxigenic profile is different depending on theFusarium species considered and, in some species, differences can also be observed at intraspecific level. Information about the distribution and variability of the mycotoxigenicFusarium species allow prediction of the toxins that may occur and to devise control strategies. In this work, the occurrence of mycotoxigenicFusarium species associated to cereals was analysed in a wide sample of durum wheat fields (Triticum durum Desf.) and maize from the South West of Spain (Andalucía).F. equiseti, F. graminearum andF. culmorum were the most frequentFusarium species detected in wheat fields followed byF. sambucinum andF. avenaceum, whereas in the case of maize,F. verticillioides andF. proliferatum were the onlyFusarium species present. The relationships of the Spanish isolates from theF. equiseti, F. avenaceum andF. sambucinum species were analysed by nucleotide sequence comparison of a partial region of the Elongation Factor 1 alpha (EF-1α) with other sequences available in data bases. The results indicated thatF. avenaceum andF. equiseti showed high variability and that the SpanishF. equiseti isolates seemed to belong toF. equiseti type II. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005 Financial support: MCYT (AGL2004/07549/C05/5). M. Jurado was supported by pre-doctoral fellowship by the MCYT  相似文献   

6.
This study was designed to identify and compare the Fusarium species of the Gibberella fujikuroi complex on pearl millet (Pennisetum glaucum (L.) R. Br) and corn (Zea mays L.) crops grown in southern Georgia, and to determine their influence on potential fumonisin production. Pearl millet and corn samples were collected in Georgia in 1996, 1997 and 1998. Three percent of the pearl millet seeds had fungi similar to the Fusarium species of the G. fujikuroi species complex. One hundred and nineteen representative isolates visually similar to the G. fujikuroi species complex from pearl millet were paired with mating population A (Fusarium verticillioides (Sacc.) Nirenberg), mating population D (F. proliferatum (Matsushima) Nirenberg) and mating population F (F. thapsinum (Klittich, Leslie, Nelson and Marasas) tester strains. Successful crosses were obtained with 50.4%, 10.1% and 0.0% of these isolates with the A, D and F tester strains, while 39.5 of the isolates did not form perithecia with any tester strains. Two of the typical infertile isolates were characterized by DNA sequence comparisons and were identified as Fusarium pseudonygamai (Nirenberg and ODonnell), which is the first known isolation of this species in the United States. Based on the pattern of cross-compatibility, conidiogenesis, colony characteristics and media pigmentation, a majority of the infertile isolates belong to this species. Fumonisins FB1 and FB2 were not detected in any of the 81 pearl millet samples analyzed. The species of the G. fujikuroi species complex were dominant in corn and were isolated from 84%, 74% and 65% of the seed in 1996, 1997 and 1998, respectively. Representative species of the G. fujikuroi species complex were isolated from 1996 to 1998 Georgia corn survey (162, 104 and 111 isolates, respectively) and tested for mating compatibility. The incidence of isolates belonging to mating population A (F. verticillioides) ranged from 70.2% to 89.5%. Corn survey samples were assayed for fumonisins, and 63% to 91% of the 1996, 1997 and 1998 samples were contaminated. The total amount of fumonisins in the corn samples ranged from 0.6 to 33.3 g/g.  相似文献   

7.
Maize (Zea mays) is an important food crop in the foothills of the Nepal Himalaya Mountains. Surveys have found that maize in Nepal is contaminated withFusarium species, mainlyF. verticillioides andF. proliferatum, which produce fumonisins, andF. graminearum, which produces trichothecenes, mainly nivalenol and 4-deoxynivalenol. Maize from smallholder farms and markets is often contaminated with fumonisins and trichothecenes above 1000 ng/g, a level of concern for human health. These mycotoxins were not eliminated by traditional fermentation for producing maize beer, but Nepalese women were able to detoxify contaminated maize by hand-sorting visibly disease kernels. An integrated approach to reduce mycotoxins risks in maize in Nepal and other developing countries should include plant breeding to produce ear rot resistant cultivars, along with education in mycotoxins risks and in agricultural and grain storage practices to reduce mycotoxin contamination. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005  相似文献   

8.
Fusarium proliferatum is able to produce fumonisins and is considered a pathogen of many economically important plants (e.g. corn, rice, asparagus) [1]. The occurrence of fumonisin FB1 inF. proliferatum infected asparagus spears from Germany was investigated using a liquid chromatography/electrospray ionization-mass spectrometry (LC-ESI-MS) method with isotopically labeled fumonisin FB1-d6 as internal standard. Asparagus samples were harvested in July 2000 and screened forFusarium species. AltogetherF. oxysporum, F. proliferatum and F. sambucinum were isolated from the spears. The samples infected with F.proliferatum were subsequently analyzed for fumonisins. FB1 was detected in 9 of the 10 samples in amounts ranging from 36.4 ng/g to 4513.7 ng/g (based on dry weight). Fumonisins FB2 and FB3 were found in six samples in lower concentrations. In asparagus spears of June 2002 we could findF. proliferatum in 6% of the samples, however no fumonisins were detectable. Furthermore the capability of producing FB1 by the fungus in garlic bulbs was investigated. Therefore garlic was cultured inF. proliferatum contaminated soil and the bulbs were screened for infection with F.proliferatum and for the occurrence of fumonisins by LC-MS. F.proliferatum was detectable in the garlic tissue and all samples contained FB1 (26.0 ng/g to 94.6 ng/g). This is the first report of the natural occurrence of FB1 in German asparagus spears and furthermore our findings suggest a potential for natural contamination of garlic bulbs with fumonisins. For detailed results and methods see Ref. [2].  相似文献   

9.
African and Asian populations of Fusarium spp. (Gibberella fujikuroi species complex) associated with Bakanae of rice (Oryzae sativa L.) were isolated from seeds and characterized with respect to ecology, phylogenetics, pathogenicity and mycotoxin production. Independent of the origin, Fusarium spp. were detected in the different rice seed samples with infection rate ranges that varied from 0.25% to 9%. Four Fusaria (F. andiyazi, F. fujikuroi, F. proliferatum and F. verticillioides) were found associated with Bakanae of rice. While three of the Fusaria were found in both African and Asian seed samples, F. fujikuroi was only detected in seed samples from Asia. Phylogenetic studies showed a broad genetic variation among the strains that were distributed into four different genetic clades. Pathogenicity tests showed that all strains reduced seed germination and possessed varying ability to cause symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB1 and FB2) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F. proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease.  相似文献   

10.
Asparagus spears collected from a total of six commercial plantings in Austria during the main harvest periods in May and June of 2003 and 2004 were examined for endophytic colonization byFusarium spp., particularlyF. proliferatum. Potentially toxigenic fungi such asF. proliferatum were isolated and identified by morphological characteristics using light microscopy. Fumonisin B1 inF. proliferatum-infected asparagus spears was detected with IAS-HPLC-FLD or HPLC-MS/MS. The identity of endophytic fungi colonizing of a total of 816 individual spears was determined. The incidence of infection byF. proliferatum and otherFusarium spp. was highly dependent on location and sampling date. The dominantFusarium species among the endophytic microflora wasF. oxysporum. Other frequently isolated species includedF. proliferatum, F. sambucinum, F. culmorum, F. avenaceum andF. equiseti. The incidence ofF. proliferatum-infected asparagus spears was less than 10% at four of the six sampling locations. At the two remaining locations, 20–47% of the spears examined were infected withF. proliferatum. Further exploration of FB1 generation in asparagus is required because the low levels of FB1 (10–50 (μg/kg) detected in harvested spears in 2003 and 2004 cannot be explained by the results of this study.
  相似文献   

11.
PCR analysis was used to detect Fusarium species generically, as well as the mycotoxin-producing species F.␣subglutinans, F. proliferatum, and F. verticillioides in leaf axil and other maize tissues during ear fill in a multiyear study in central Illinois. The frequency of Fusarium detected varied from site to site and year to year. Fusarium was generically detected more frequently in leaf axil material than in leaf/husk lesions. In two growing seasons, the leaf axil samples were also tested for the presence of the mycotoxin producing species F. proliferatum, F. subglutinans, and F. verticillioides. Overall, F. proliferatum and F. verticillioides were detected less often than F. subglutinans. Fusarium was generically and specifically detected most commonly where visible fungal growth was present in leaf axil material. Disclaimer: The mention of firm names or trade products in this article does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar products not mentioned.  相似文献   

12.
Pineapple (Ananas comosus) is one the important fruit crops planted in Malaysia, and this study was conducted to determine Fusarium spp. associated with diseases of the fruit crop as Fusarium is prevalent in tropical countries. Our objective was to identify and characterize Fusarium spp. associated with pineapple fruit rot and leaf spot mainly found on the fruits and leaves in Peninsular Malaysia. Fusarium isolates (n = 108) associated with pineapple fruit rot and leaf spot were characterized by morphological, molecular and phylogenetic analyses, a mating study and pathogenicity testing. TEF‐1α sequence analysis identified Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari and Fusarium sp. Mating was successful only between tester strains of F. proliferatum and F. verticillioides. Sexual crosses with standard tester strains showed that 82 isolates of F. proliferatum produced fertile crosses with mating population D (Gibberella intermedia) and three isolates of F. verticillioides were fertile with the tester strain of mating population A (Gibberella moniliformis). All isolates were pathogenic, causing pineapple fruit rot and leaf spot, thus fulfilling Koch's postulates.  相似文献   

13.
Fusarium subglutinans f. sp. pini (= F. circinatum) is a pathogen of pine and is one of eight mating populations (i.e., biological species) in the Gibberella fujikuroi species complex. This species complex includes F. thapsinum, F. moniliforme (= F. verticillioides), F. nygamai, and F. proliferatum, as well as F. subglutinans associated with sugarcane, maize, mango, and pineapple. Differentiating these forms of F. subglutinans usually requires pathogenicity tests, which are often time-consuming and inconclusive. Our objective was to develop a technique to differentiate isolates of F. subglutinans f. sp. pini from other isolates identified as F. subglutinans. We sequenced the histone H3 gene from a representative set of Fusarium isolates. The H3 gene sequence was conserved and contained two introns in all the isolates studied. From both the intron and the exon sequence data, we developed a PCR-restriction fragment length polymorphism technique that reliably distinguishes F. subglutinans f. sp. pini from the other biological species in the G. fujikuroi species complex.  相似文献   

14.
Fusarium species from agricultural crops have been well studied with respect to toxin production and genetic diversity, while similar studies of communities from nonagricultural plants are much more limited. We examined 72 Fusarium isolates from a native North American tallgrass prairie and found that Gibberella intermedia (Fusarium proliferatum), Gibberella moniliformis (Fusarium verticillioides), and Gibberella konza (Fusarium konzum) dominated. Gibberella thapsina (Fusarium thapsinum) and Gibberella subglutinans (Fusarium subglutinans) also were recovered, as were seven isolates that could not be assigned to any previously described species on the basis of either morphological or molecular characters. In general, isolates from the prairie grasses produced the same toxins in quantities similar to those produced by isolates of the same species recovered from agricultural hosts. The G. konza isolates produce little or no fumonisins (up to 120 μg/g by one strain), and variable but generally low to moderate amounts of beauvericin (4 to 320 μg/g) and fusaproliferin (50 to 540 μg/g). Toxicity to Artemia salina larvae within most species was correlated with the concentration of either beauvericin or fusaproliferin produced. Organic isolates from some cultures of G. moniliformis were highly toxic towards A. salina even though they produced little, if any, beauvericin or fusaproliferin. Thus, additional potentially toxigenic compounds may be synthesized by G. moniliformis strains isolated from prairie grasses. The Fusarium community from these grasses appears to contain some species not found in surrounding agricultural communities, including some that probably are undescribed, and could be capable of serving as a reservoir for strains of potential agricultural importance.  相似文献   

15.
One of the economically important diseases of onion is the basal rot caused by various Fusarium species. Identification of the pathogenic species prevalent in a region is indispensable for designing management strategies, especially to develop resistant cultivars. Eighty Fusarium isolates are obtained from red onion bulbs on infected fields of East Azarbaijan province. Inoculating the onion bulbs with 38 selective isolates indicated that 17 isolates were pathogenic on onion. According to the morphological and molecular characteristics, these isolates were identified as F. oxysporum, F. solani, F. proliferatum and F. redolens. This is the first report of F. redolens on onion in Iran. On the other hand, the virulence of each pathogenic isolate was evaluated on onion bulbs and seedlings. F. oxysporum which causes severe rot and damping-off was considered as a highly virulent species in both conditions. While, F. proliferatum was considered as the most destructive on onion bulbs. Rot ability of F. solani was not considerable, and only the 4S isolate caused pre- and post-emergence damping-off more than 50%. Finally, F. redolens with less pathogenicity on onion bulbs was identified as the most virulent isolate on onion seedlings, which was explanatory of its importance on farm.  相似文献   

16.
Mango malformation has become the most important global disease on mango. Fusarium species previously associated with this disease include F. mangiferae, F. mexicanum, F. sterilihyphosum, F. proliferatum, F. subglutinans and F. tupiense. A few strains of F. proliferatum have been reported from Malaysia, but in this study, we report the results of more extensive sampling. The recovered strains were evaluated with morphology, mating tester strain cross‐fertility, amplified fragment length polymorphisms (AFLPs), and partial DNA sequences of the genes encoding translation elongation factor 1‐α (tef‐1α) and β‐tubulin (tub‐2). Amongst the 43 strains evaluated, three species were identified – F. proliferatum, F. mangiferae and F. subglutinans – with F. proliferatum being the most frequent (69%). None of the Fusarium species that appear to originate in the Americas were recovered in Malaysia, which suggests special measures may be warranted to keep these species from entering the country.  相似文献   

17.
Fumonisins are mycotoxins produced by several species of Fusaria. They are found on corn and in corn-based products, can cause fatal illnesses in some animals and are suspected human esophageal carcinogens. Fumonisins are believed to cause toxicity by blocking ceramide synthase, a key enzyme in sphingolipid biochemistry which converts sphinganine (or sphingosine) and fatty acyl CoA to ceramide. Relatively fewfungal species have been evaluated for their ability to produce fumonisins. Fewer have been studied to determine if they produce ceramide synthase inhibitors, whether fumonisin-like structures or not, therefore potentially having toxicity similar to fumonisins. We analyzed corn cultures of 49 isolates representing 32 diversespecies of fungi for their ability to produce fumonisins. We also evaluated the culture extracts for ceramide synthase activity. Only cultures prepared with species reported previously to produce fumonisins – Fusarium moniliforme and F. proliferatum – tested positive for fumonisins. Extracts of these cultures inhibited ceramide synthase, as expected. None of the other fungal isolates we examined produced fumonisins or other compounds capable of inhibiting ceramide synthase. Although the fungi we selected for these studies represent only a few ofthe thousands of species that exist, they share the commonality that they are frequently associated with cereal grasses, including corn, either as pathogens or as asymptomatic endophytes. Thus,these results should be encouraging to those attempting to find ways to genetically manipulate fumonisin-producing fungi, tomake corn more resistant, or to develop biocontrol measures because it appears that only a relatively few fungal contaminants of corn can produce fumonisins. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.  相似文献   

19.
Leaves and stalks of many sorghum genotypes accumulate dark red or purple pigments upon wounding while some plants, called ‘tan,’ do not. Grains with unpigmented ‘white’ pericarps grown on tan plants are more desirable for food. The hypothesis tested was that pigments in plants protected grain against the panicle diseases grain mould and head smut. Near‐isogenic tan or purple plant colour genotypes with white grain were planted at Lincoln and Ithaca, NE and Corpus Christi, TX. The field grown grain was plated onto semi‐selective media to detect the presence of grain colonisation by mould genera Alternaria, Fusarium and Curvularia. More Fusarium and Curvularia spp. were recovered from grain grown at Corpus Christi than the Nebraska locations; however, there was no indication that the grain from purple plants was more resistant to the three fungal genera. Most fungi were identified morphologically as Alternaria alternata. Molecular identification of Fusarium species, using translation elongation factor 1‐α gene sequences, showed that Fusarium thapsinum and Fusarium proliferatum infected grain at all three locations. Head smut disease of panicles, caused by the fungus Sporisorium reilianum, was assessed at Corpus Christi; surprisingly, purple plants had significantly greater disease incidence than tan plants. We propose that the tan plant colour lines with white grain are promising for development of food‐grade sorghums not more susceptible than pigmented lines to grain mould and head smut.  相似文献   

20.
During a series of sampling in 2008 and 2009, stem rot disease was detected in Hylocereus polyrhizus plantations in Malaysia, with symptom appeared as circular, brown sunken lesion with orange sporodochia and white mycelium formation on the lesion surface. Eighty‐three isolates of Fusarium were isolated from 20 plantations and were morphologically identified as F. proliferatum based on the variability of colony appearance, pigmentation, growth rate, length of chains, production of bluish sclerotia, concentric ring aerial mycelium and sporodochia. Three species‐specific primers, namely ITS1/proITS‐R, PRO1/2 and Fp3‐F/4‐R successfully produced PCR products and confirmed that the isolates from stem rot of H. polyrhizus were F. proliferatum isolates. From BLAST search of translation elongation factor 1‐alpha (TEF1‐α) sequences, the isolates showed 99–100% similarity with F. proliferatum deposited in GenBank which further confirmed that the isolates were F. proliferatum. The results from amplification of MAT‐allele specific primers indicated that 14.5% of F. proliferatum isolates carried MAT‐1 allele and 85.5% carried MAT‐2. Crossing results showed that all 83 F. proliferatum isolates were male fertile showing positive crosses with the tester strains of MATD‐1 and MATD‐2. Perithecia oozing ascospore were produced. Forty isolates as representative were evaluated for pathogenicity test, produced rot symptoms similar to those observed in the fields which confirmed the isolates as the causal agent of stem rot of H. polyrhizus. To our knowledge, this is the first report of stem rot of H. polyrhizus caused by F. proliferatum in Malaysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号