首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of dexamethasone, EGF and insulin on the synthesis of rRNA and phosphorylation of nucleolin in primary cultures of adult rat hepatocytes were studied. Hepatocytes were incubated for 8 h with EGF (20 ng/ml) plus insulin (0.1 μM) and/or for 20 h with dexamethasone (1 μM) before the end of incubation. The incorporation of [3H]uridine into acid-insoluble materials and the nuclear activity of RNA polymerase I were stimulated approx. 2-fold with EGF plus insulin and these were further enhanced 2–3-times by dexamethasone, although dexamethasone alone exerted no stimulation. When hepatocytes were incubated with [32P]orthophosphate, similar enhancement by these hormones was also observed in the phosphorylation of a nucleolar protein, nucleolin, which was detected by immunoprecipitation with anti-nucleolin antibodies. The amount of nucleolin was slightly increased by EGF plus insulin in the presence of dexamethasone, but scarcely changed by treatment with EGF plus insulin or dexamethasone alone. Cycloheximide inhibited RNA synthesis to a greater or lesser degree in the case of all hepatocytes which were cultured with or without these hormonal treatments. These results indicate that the in vivo effect of glucocorticoid on rRNA synthesis and nucleolin phosphorylation in liver is primarily a direct action on parenchymal cells and requires other growth factors such as EGF and insulin.  相似文献   

2.
Ribosomal RNA (rRNA) synthesis in murine P1798 lymphosarcoma cells is reversibly inhibited by glucocorticoids. The effects of dexamethasone upon nucleolin phosphorylation and upon the amount and activity of casein kinase II have been examined. P1798 cells were exposed to 0.1 microM dexamethasone for 36 h. Cells were labeled in vivo with [32P]orthophosphate followed by immunoprecipitation with anti-nucleolin antibody. Nucleolin phosphorylation was reduced by 60% in dexamethasone-treated cells. Nucleoli were isolated and labeled with [gamma-32P]ATP in vitro. Nucleolin protein was reduced to 40% of control in nuclei from dexamethasone-treated cells. Nucleolin phosphorylation was reduced to 20% of control. Nucleolar casein kinase II activity and protein were also reduced (30-55% and 35-50% of control, respectively) by treatment with dexamethasone. Cycloheximide (10 micrograms/ml for 3 h) reduced the amount and activity of casein kinase II, but did not cause a decrease in nucleolin protein. These observations are discussed relative to the hypothesis that glucocorticoids regulate the amount or activity of proteins of short biological half-life that are involved in the regulation of rRNA synthesis.  相似文献   

3.
Recent studies with viral oncogene tyrosine kinases have suggested that these kinases may phosphorylate phosphoinositides and diacylglycerol. Since the receptors for insulin and epidermal growth factor (EGF) also possess tyrosine kinase activity, we have investigated possible effects of insulin and EGF on phosphoinositide metabolism in rat liver plasma membranes and rat hepatocytes. In plasma membranes prepared from rats injected 18 h prior with [3H]myo-inositol or incubated with [gamma-32P]ATP, phosphatidylinositol-4-P and phosphatidylinositol-4,5-P2 were formed, but there were no effects of either insulin or EGF although these agents stimulated protein tyrosine phosphorylation. In hepatocytes incubated with [3H]myo-inositol, label was incorporated into phosphatidylinositol, phosphatidylinositol-4-P, and phosphatidylinositol-4,5-P2, but there was no effect of insulin. Incubation of hepatocytes with [3H]myo-inositol plus insulin or EGF for 2 h also did not alter the formation of [3H]myo-inositol-1,4,5-P3 from [3H]phosphatidylinositol-4,5-P2 induced by vasopressin. These findings suggest that the tyrosine kinase activity of liver insulin and EGF receptors is not important in phosphoinositide formation.  相似文献   

4.
We used primary cultures of rat hepatocytes to evaluate the effects of glucocorticoids on insulin-responsive hepatic lipogenesis. The data indicate that hepatocytes incubated for 20 h with dexamethasone (0.1 microM) alone are profoundly resistant to the ability of insulin to stimulate lipogenesis acutely. In contrast, primary cultures of hepatocytes incubated with dexamethasone plus insulin are hyper-responsive to the ability of insulin to stimulate lipogenesis chronically. This potentiation of insulin action by a glucocorticoid occurs at physiological concentrations of the two hormones. Exposure to dexamethasone plus insulin for more than 4 h is required for the two hormones to enhance insulin action either by overcoming the insulin resistance induced by dexamethasone alone or by stimulating insulin action induced by insulin alone. Despite the marked potentiation of insulin action, hepatocytes exposed to dexamethasone plus insulin are less sensitive to insulin, as demonstrated by a shift to the right in the dose-response curve for insulin-stimulated lipogenesis. The resistance of hepatocytes to the acute effects of insulin after exposure to dexamethasone alone and the potentiation of insulin action and decreased sensitivity to insulin after exposure to insulin plus dexamethasone are all mediated by post-insulin-binding events. These studies demonstrate potentiation of insulin action in the liver by physiological concentrations of glucocorticoids and may have physiological significance for the regulation of normal hepatic lipogenesis, for the hyperlipidaemia observed with the pharmacological use of glucocorticoids, and for disease states in man associated with hyperinsulinaemia and hypercortisolism.  相似文献   

5.
6.
Many hepatocellular activities may be proximally regulated by intracellular signalling proteins including mitogen-activated protein kinases (MAPK). In this study, signalling events from epidermal growth factor (EGF) and insulin were examined in primary cultured human and rat hepatocytes. Using Western immunoblots, rat and human hepatocytes were found to produce a rapid tyrosine phosphorylation of the EGF receptor and MAPK following 0·5–1 min exposure to EGF. Phosphorylation of p42 and p44 MAPK was observed following 2·5 min exposure to EGF. Insulin treatment produced phosphorylation of the insulin receptor β subunit; shc phosphorylation was not observed. MAPK phosphorylation corresponded with a shift in molecular weight and an increase in kinase activity. Insulin-dependent activation of MAPK was unequivocally observed only in human hepatocytes, though a slight activation was detected in rat. Co-treatment with insulin and EGF produced phosphorylation and complete electrophoretic shift in molecular weight of MAPK, with an additive or synergistic increase in enzyme activity in rat but not human hepatocytes; human hepatocyte MAPK was maximally stimulated by EGF alone. Glucagon pretreatment blocked phosphorylation, gel mobility shift and kinase activity of MAPK induced by insulin but only partially blocked EGF-induced MAPK activation in human hepatocytes. Glucagon also reduced the activation of MAPK by EGF in rat hepatocytes. Pre-treatments with forskolin or cyclic AMP analogues diminished in the insulin-, EGF- and insulin plus EGF-dependent activation of MAPK in rat hepatocytes without effecting phosphorylation of receptors or MAPK. These results indicate that although EGF and insulin may both signal through the MAPK/ras/raf/MAPK pathway, the response for MAPK differs between these ligands and between species. Further, in both rat and human, glucagon exerts its effects through a cyclic AMP-dependent mechanism at a level in the insulin and EGF signal transduction pathways downstream of MAPK but promixal to MAPK. The partial inhibition of EGF-induced MAPK phosphorylation by glucagon in human hepatocytes provides further evidence for a raf-1-independent pathway for activation of MAPK. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
8.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

9.
Rapidly growing cells usually have high levels of ribosome biogenesis. The sequential expression of protooncogenes during the transition of quiescent hepatocytes to the replicative stage was assumed to be followed by activation of cellular genes related to cell growth such as ribosome biosynthesis. First, the expression of major nucleolar protein (nucleolin or C23) and major heat-shock protein (hsp 70) genes was examined during rat liver regeneration. hsp 70 may function in cell growth and has a characteristic nucleolar location after heat shock. Both nucleolin and hsp 70 mRNA began to increase simultaneously after peaks of c-fos and c-myc, showed a peak 6 h after partial hepatectomy, and declined to the control levels around 20 h. That is, the peaks of nucleolin and hsp 70 mRNA precede the peak of ribosome formation (12-20 h) and DNA replication (24 h). Second, the behavior of nucleolin and hsp 70 mRNA was examined in primary cultured hepatocytes during their G0-G1 transition. Although the amounts of c-myc mRNA reached a plateau around 20 h after the initiation of culture and remained at these levels, DNA synthesis has never been found to start without the addition of EGF and insulin to this system. Both nucleolin and hsp 70 mRNA began to increase at around 20 h (prereplicative stage) and simultaneously decreased in inverse proportion to DNA synthesis induced by these growth factors. Thus, it is possible that the simultaneous enhancement of nucleolin and hsp 70 genes as described above is not merely coincidental, but is important biologically during the transition of quiescent hepatocytes to proliferative cells.  相似文献   

10.
Pyruvate kinase activity in primary cultures of hepatocytes isolated from a normal rat was maintained at a constant level similar to that found in vivo (14.0 +/- 2.8 units per mg of DNA) for over 6 days when both dexamethasone and insulin were included in the medium. Yet the pyruvate kinase activity decreased 50% when the cells were cultured for 2 days and 4 days, respectively, in the presence of either dexamethasone or insulin alone. A brief, 10 min incubation of hepatocytes in the presence of dexamethasone was sufficient to maintain the enzyme activity of cells subsequently cultured for 4 days in the presence of insulin. The optimal dexamethasone concentration was 1 microM. Three other glucocorticoids were able to maintain the pyruvate kinase activity in cells cultured in medium containing insulin. The presence of the protein synthesis inhibitors, actinomycin D or cyclohexamide in cells cultured in the presence of dexamethasone and insulin resulted in a 25% decrease in the pyruvate kinase activity. Therefore, it is suggested that the synergistic effect of glucocorticoids and insulin to maintain pyruvate kinase activity in primary cultures of hepatocytes is dependent upon the ability of these cells to maintain protein synthesis.  相似文献   

11.
Epidermal growth factor mimics insulin effects in rat hepatocytes.   总被引:9,自引:5,他引:4       下载免费PDF全文
Epidermal growth factor (EGF) mimicked the effect of insulin to activate glycogen synthase and stimulate glycogen synthesis in isolated rat hepatocytes. Both agents required glucose (greater than 5 mM) and had similar time courses of action. The maximum effect of EGF was approx. 70% of that of insulin, and the half-maximally effective concentrations were 9 nM and 4 nM respectively. Combinations of the two agents produced additive responses. EGF also resembled insulin in its ability to inhibit the effects of 0.1-1.0 nM-glucagon on cyclic AMP and glycogen phosphorylase in hepatocytes. The maximum effect of EGF was approx. 70% of that of insulin, and the half-maximally effective concentrations were approx. 5 nM and 0.5 nM respectively. EGF and insulin inhibited phosphorylase activation by exogenous cyclic AMP, and inhibited cyclic AMP accumulation induced by forskolin. They also inhibited phosphorylase activation provoked by phenylephrine, but not by vasopressin. EGF added alone rapidly activated phosphorylase and increased cytosolic [Ca2+], but the effects were no longer apparent at 5 min and were smaller than those of vasopressin. Insulin did not induce these changes. In hepatocytes previously incubated with myo-[3H]inositol, EGF did not significantly increase myo-inositol 1,4,5-trisphosphate. However, its ability to increase cytosolic [Ca2+] was blocked by neomycin, an inhibitor of phosphatidylinositol bisphosphate hydrolysis. It is concluded that some, but not all, of the effects of EGF in liver are strikingly similar to those exerted by insulin, suggesting that these agents may have some similar mechanisms of action in this tissue.  相似文献   

12.
The effects of dexamethasone (a synthetic glucocorticoid) and insulin on the secretion of very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) were investigated. Rat hepatocytes in monolayer culture were preincubated for 15 h in the presence or absence of combinations of 100 nM-dexamethasone and 2 nM-, 10 nM- or 50 nM-insulin. Dexamethasone increased [3H]oleate incorporation into secreted triacylglycerol by 2.7-fold and the mass of triacylglycerol secreted by 1.5-fold. Insulin alone decreased these parameters and antagonized the effect of dexamethasone. Dexamethasone increased the secretion of [3H]leucine in apolipoprotein (apo) E, and in the large (BH) and small (BI) forms of apo B in VLDL by about 7.1-, 3.6- and 4.0-fold respectively. Insulin alone decreased the secretion of these 3H-labelled apolipoproteins in VLDL. However, 2 nM-insulin with dexamethasone increased the secretion of 3H-labelled apo BH and apo BL by a further 0.8- and 3.2-fold respectively; 50 nM-insulin decreased the secretions of apo E, apo BH and apo BL in VLDL. Similar effects for dexamethasone or insulin alone were also obtained for the masses of apo E and apo BL + H secreted in VLDL. Albumin secretion was not significantly altered by either dexamethasone or insulin alone, but in combination they stimulated by 2.1-2.6-fold. Insulin or dexamethasone alone had little effect on the secretion of apolipoproteins in the HDL fraction. However, dexamethasone plus 2 nM-insulin increased the incorporation of [3H]leucine into apo AI, apo AH plus apo C, apo AIV and apo E of HDL by about 1.8-, 1.6-, 1.7- and 2.0-fold respectively. The apo E in the bottom fraction represented about 69% of the total 3H-labelled apo E secreted. The responses in the total secretion of apo E from the hepatocytes resembled those seen in HDL. The interactions of insulin and dexamethasone are discussed in relation to the general regulation of lipoprotein metabolism, the development of hyperlipidaemias and the predisposition to premature atherosclerosis.  相似文献   

13.
Dexamethasone can promote the differentiation of different tissues in vivo while dimethylsulfoxide is a commonly used inducer of differentiation in various tumor cell types in culture. In the present study, the effects of dexamethasone and dimethylsulfoxide on growth and functional activities of cultured differentiating suckling rat hepatocytes stimulated with various combinations of EGF, insulin, and glucagon were evaluated. Hepatocytes stimulated with EGF and either insulin or glucagon entered S phase and mitosis after a lag period of 24 h. These hormonal factors thus provide simple combinations of hepatocyte-growth regulators. Dexamethasone in the presence of EGF and glucagon inhibited the initiation of DNA synthesis and mitosis, but it had no effect on EGF-insulin stimulated cultures. Such a differential effect of dexamethasone was observed at concentrations ranging from 4 nM to 200 microM. alpha-Fetoprotein, albumin, and tyrosine aminotransferase were used as typical markers of hepatocyte differentiation status. Irrespective of the combinations of growth-promoting factors used, dexamethasone inhibited alpha 1-fetoprotein production and maintained albumin production and tyrosine aminotransferase inducibility. In contrast, dimethylsulfoxide at 2% inhibited hepatocyte growth and supported the maintenance of the production of both alpha 1-fetoprotein and albumin, independent of the hormonal growth regulators used. On this basis, dexamethasone and dimethylsulfoxide act as distinct modulators of growth and maturation of cultured differentiating suckling rat hepatocytes.  相似文献   

14.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

15.
Addition of a combination of insulin, dexamethasone and EGF at seeding time to cultured rat hepatocytes in serum-free medium caused a selective increase in the biosynthesis of particular cytokeratin components. This increase was prominent during the first day in culture. No significant increases were detected in the absence of hormones or in the presence of either hormones added alone or in pairs, except in the case of insulin plus dexamethasone, which yielded an effect close to that obtained with the three factors. Interestingly, the latter condition also maintained a high level of albumin production over a 6-day period in culture.  相似文献   

16.
Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin.  相似文献   

17.
Prostacyclin synthesis by cultured vascular smooth muscle cells was inactivated by aspirin. Recovery required serum factors replaceable by EGF plus TGF-beta and was blocked by cycloheximide but not by actinomycin D. Recovery of cyclooxygenase activity was prevented by preincubation with dexamethasone (0.1 to 2 microM), which also suppressed basal enzyme activity by up to 70%. A full length 2.8 Kb cDNA hybridization probe for human cyclooxygenase identified a cyclooxygenase messenger RNA of approximately 2.8 Kb in these cells. Cyclooxygenase mRNA levels were enhanced by EGF/TGF-beta, but suppressed completely by corticosteroids. It is concluded that inhibition of prostanoid synthesis by corticosteroids is mediated by suppressing cyclooxygenase messenger RNA. These observations provide a new molecular mechanism for the anti-inflammatory activity of the corticosteroids.  相似文献   

18.
19.
The c-fos expression was investigated in primary culture of guinea pig glandular epithelial cells. These cells were made quiescent by serum deprivation and stimulated with fetal calf serum (FCS, 15%), 17 beta-estradiol (E2 10(-8) mol/l) alone or in combination with epidermal growth factor (EGF, 100 ng/ml) and insulin (I, 10 micrograms/ml). Low levels of c-fos mRNA were detectable in quiescent cells and were not increased in cells stimulated with either E2, EGF, I, or EGF plus I. On the contrary, the c-fos mRNA were early and transiently increased by FCS or E2 plus EGF plus I (4.5 and 9.5 fold induction, respectively). This effect was independent of de novo protein synthesis since it was not abolished in the presence of cycloheximide. It appears that E2 acts in a multiple step process including the stimulation by EGF plus insulin.  相似文献   

20.
Upon epidermal growth factor (EGF) stimulation, fetal (20 days of gestation) and regenerating (44-48 h after partial hepatectomy) rat hepatocytes, isolated and cultured under identical conditions, increased DNA synthesis and entered into S-phase and mitosis, measured as [3H]thymidine incorporation and DNA content per nucleus in a flow cytometer, respectively. Fetal hepatocytes consisted of a homogeneous population of diploid (2C) cells. Two different populations of cells were present in regenerating liver, diploid (2C) and tetraploid (4C) cells, that responded to EGF. Glucagon or norepinephrine did not affect EGF stimulation of DNA synthesis in fetal liver cells, but they potentiated EGF response in regenerating hepatocyte cultures. Glucocorticoid hormones (dexamethasone) inhibited DNA synthesis in fetal hepatocyte cultures, an effect potentiated by the presence of glucagon or norepinephrine. In contrast, in regenerating hepatocytes, dexamethasone increased EGF-induced proliferation. EGF-dependent DNA synthesis was inhibited by TGF-beta in both fetal and regenerating cultured hepatocytes. TGF-beta action was partially suppressed by norepinephrine in regenerating hepatocytes, but was without effect in fetal hepatocyte cultures, whereas a synergistic action between TGF-beta and dexamethasone inhibiting growth in fetal but not in regenerating hepatocytes was found. Taken together, these results may suggest that there are significant differences between fetal and regenerating hepatocyte growth in their response to various hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号