首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目的研究流感病毒H1N1及其他亚型在Vero细胞系和MDCK细胞系高效增殖的最适条件,比较两种细胞系对流感病毒的敏感性差异及影响敏感性差异的条件。方法在培养好的Vero细胞系与MDCK细胞系用不同的病毒感染复数(M.O.I)、胰酶浓度、病毒吸附时间、病毒维持液血清质量浓度等条件进行流感病毒在细胞上的增殖。结果在M.O.I为0.01接种流感病毒,吸附时间为1 h,胰酶质量浓度2μg/mL,血清质量浓度为8%时,流感病毒血凝素在MDCK细胞系可获得较高的滴度。结论 MDCK细胞系是适于流感病毒培养的细胞,它作为生产新型流感病毒疫苗的主要细胞基质需要进一步的研究。  相似文献   

2.
目的探索MDCK细胞在微载体上的培养条件,并研究H1N1型流感病毒在MDCK细胞上的增殖条件。方法在微载体上培养好MDCK细胞上用H1N1型流感病毒在不同的病毒感染复数(MOI)、胰酶浓度两个关键的病毒增殖条件进行流感病毒在细胞上的增殖研究。结果微载体质量浓度为6 g/L时,MDCK细胞培养密度可以达到4.5×106cells/mL。在MOI为0.05接种流感病毒,胰酶质量浓度4μg/mL,流感病毒在MDCK细胞上可获得较高的滴度。结论 MDCK细胞用微载体培养可以达到较高的细胞密度,可以作为规模化生产新型流感病毒疫苗的主要细胞基质进行进一步的研究。  相似文献   

3.
目的探讨轮状病毒D36株在MDCK细胞和Vero细胞上培养的适应性,确定其培养的最佳细胞基质及培养条件。方法将D36株以MOI 1.0按不同培养瓶分组接种MDCK细胞和Vero细胞,补充含有不同浓度胰酶的维持液,于不同时间观察两种细胞病变的情况,同时抽样检测病毒滴度,分析两种细胞对D36株的敏感性。结果D36株病毒感染MDCK细胞后第6天病毒滴度达到最高,为(5.00~5.50)lgCCID50/mL;而D36株病毒感染Vero细胞后病毒滴度于第8天达高峰,为(4.50~4.75)lgCCID50/mL。另外,在两种细胞维持液中加入约0.8μg/mL的胰酶均可提高病毒滴度。结论两种细胞系在同等条件下感染D36株病毒后,MDCK细胞比Vero细胞出现病变的时间早,每一批MDCK细胞培养物病毒滴度高于同批次试验的Vero细胞培养物。  相似文献   

4.
目的:优化Vero细胞培养H7N9流感病毒的培养条件,建立细胞培养病毒高产培养系统。方法:采用不同病毒接种MOI、培养温度、pH值和TPCK胰酶等条件优化培养H7N9流感病毒Vero细胞适应株A/Shanghai/CN02/2013(H7N9)Va的条件,并将其连续传代后扩大至细胞工厂大规模培养。结果:Vero细胞高产H7N9流感病毒培养条件为DMEM/F12和MEM以1∶1混合,并添加0.3 mg/mL牛血清白蛋白、1%谷氨酰胺、0.5%双抗和1.5μg/mL TPCK胰蛋白酶,pH为7.4时,连续传代病毒血凝效价保持在512,扩大至细胞工厂大规模培养病毒产量稳定。结论:建立的Vero细胞培养H7N9流感病毒条件,能够持续稳定高产,并适用于细胞工厂大规模培养,有望用于H7N9流感细胞疫苗的大规模制备。  相似文献   

5.
Vero细胞培养流行性感冒病毒的研究   总被引:3,自引:0,他引:3  
探索Vero细胞培养流感病毒和用于研制流感疫苗的可行性。确立Vero细胞培养流感病毒的最适条件,把流感病毒接种于Vero细胞上培养和传代,于不同时间收获病毒液,进行灭活和超滤浓缩实验,检测血凝素滴度(HA)。结果表明胰酶、pH值、残留牛血清是流感病毒在Vero细胞培养的影响因素,最佳收毒时间为72-96小时。Vero细胞上培养流感病毒的4~7代,HA滴度较高。病毒液用0.05%福尔马林4℃,7天即可灭活,用超滤技术能浓缩流感病毒液。Vero细胞可用于流感病毒的培养和疫苗的开发。  相似文献   

6.
本文研究在生物反应器中用微载体连续灌注培养Vero细胞生产狂犬病毒制备技术。在5L体积的生物反应器中,加入含10g/L微载体的199培养基,接种Vero细胞至细胞浓度达到1×105/mL,培养7d后细胞可生长至6~7×106/mL,然后以感染复数(MOI)为0.01接种狂犬病毒VaG株,接毒后24h开始收获,连续收获12d左右,收获的病毒滴度范围在6.0~8.5logLD50/mL,收获的病毒原液经浓缩、灭活和纯化等步骤制备成疫苗,各项质量指标均达到《中国生物制品规程》2000年版要求。实验表明,用生物反应器微载体灌注培养制备人用Vero细胞狂犬病疫苗小试工艺可行。  相似文献   

7.
为优化轮状病毒株在Vero细胞上的培养条件,将轮状病毒基因重配株LH9按0.1MOI分别接种于不同规格的细胞培养瓶(100ml、2000ml、3L、15L)。病毒接种采用吸附与未吸附两种方式、病毒收获采取低温冻融后离心与直接离心两种方法,观察分析对病毒滴度的影响。实验中,用CASY细胞计数仪分析活细胞率,病毒接种后逐日观察细胞病变(CPE)并取样,采用细胞半数感染量测定病毒滴度。结果表明,使用不同规格细胞培养瓶经吸附法培养接种、低温破碎法收获的LH9株病毒滴度高,其中以15L立瓶培养滴度最高(6.0~7.0 logCCID50/ml)。  相似文献   

8.
目的:利用噬斑法比较肠道病毒71型(EV71)在RD细胞和Vero细胞中的增殖动力学特征。方法:首先探讨培养基类型、羟乙基哌嗪乙磺酸(HEPES)、胎牛血清(FBS)、牛血清白蛋白(BSA)及甲基纤维素(MC)含量对EV71噬斑形成的影响,得到最适营养覆盖物配比;进一步,EV71以感染复数(MOI)为0.1分别接种RD细胞和Vero细胞,收集接种后不同时间点的细胞培养液,噬斑法测定各时间点培养液上清中的病毒滴度,并绘制log2(病毒滴度)-时间图,对比分析EV71在2种细胞中的增殖动力学特征。结果:终浓度含1%MC和2%FBS的MEM(1×)或DMEM(1×)为EV71噬斑形成的最适营养覆盖物;EV71在RD细胞和Vero细胞中的增殖周期均约为12 h,MOI=0.1时,EV71在RD细胞中的增殖活动较Vero细胞中活跃,增殖效率比Vero细胞中高2个数量级。结论:用RD细胞扩增EV71比Vero细胞更具优势。  相似文献   

9.
目的轮状病毒基因重配株Ls(G3型)在生物反应器微载体培养Vero细胞条件的优化。方法采用3 L生物反应器微载体培养Vero细胞,观察Ls株在不同病毒感染复数(0.001、0.002、0.010、0.040 MOI)、不同温度(34.5℃和35.5℃)、不同病毒收获时间(24和48 h)对病毒增殖的影响。根据病毒滴度和收获量筛选出最适MOI、培养温度及病毒的收获时间。结果以0.002 MOI接种Vero细胞,温度为34.5℃培养病毒,滴度最高达7.50 lg CCID50/m L;48 h可连续收获4次病毒液,且收获总量及病毒滴度均高于24 h。结论通过对Ls株在生物反应器微载体Vero细胞培养条件的优化,获得的病毒液滴度高及连续培养多次收获量增加的有效方法,为进一步规模化培养奠定了基础。  相似文献   

10.
目的应用生物反应器培养Vero细胞制备EV71病毒。方法以3 L生物反应器采用4 g/L、8 g/L Cytodex-1微载体培养比较Vero细胞比生长率,并以4 g/L微载体培养EV71病毒。结果 4 g/L微载体培养Vero细胞3~4 d微载体细胞密度达2.3×106/mL,按0.001的感染复数(MOI)接种EV71病毒,病毒收获液的滴度最高达7.90 lgPFU/mL,较静置培养平均高出0.92 lgPFU/mL。结论初步建立了3 L生物反应器微载体培养Vero细胞制备EV71病毒的工艺,为进一步放大生产规模奠定了基础。  相似文献   

11.
Two strains of reovirus were propagated in Vero cells grown in stationary or microcarriers cultures. Vero cells grown as monolayers on T-flasks or in spinner cultures of Cytodex-1 or Cultispher-G microcarriers could be infected with reovirus serotype 1, strain Lang (T1L), and serotype 3, strain Dearing (T3D). A regime of intermittent low speed stirring at reduced culture volume was critical to ensure viral infection of cells in microcarrier cultures. The virus titre increased by 3 to 4 orders of magnitude over a culture period of 150 h. Titres of the T3D reovirus strain were higher (43%) compared to those of the T1L strain in all cultures. Titres were significantly higher in T-flask and Cytodex-1 microcarrier cultures compared to Cultispher-G cultures with respect to either reovirus type. The viral productivity in the microcarrier cultures was dependent upon the multiplicity of infection (MOI) and the cell/bead ratio at the point of infection. A combination of high MOI (5 pfu/cell) and high cell/bead loading (>400 for Cytodex-1 and >1,000 for Cultispher-G) resulted in a low virus productivity per cell. However, at low MOI (0.5 pfu/cell) the virus productivity per cell was significantly higher at high cell/bead loading in cultures of either microcarrier type. The maximum virus titre (8.5 x 10(9) pfu/mL) was obtained in Cytodex-1 cultures with a low MOI (0.5 pfu/cell) and a cell/bead loading of 1,000. The virus productivity per cell in these cultures was 4,000 pfu/cell. The lower viral yield in the Cultispher-G microcarrier cultures is attributed to a decreased accessibility of the entrapped cells to viral infection. The high viral productivity from the Vero cells in Cytodex-1 cultures suggests that this is a suitable system for the development of a vaccine production system for the Reoviridae viruses.  相似文献   

12.
The immunogenicity and protective efficacy of formalin-inactivated influenza B/Memphis/1/93 virus vaccines propagated exclusively in Vero cells, MDCK cells, or embryonated chicken eggs (hereafter referred to as eggs) were investigated. Mammalian cell-grown viruses differ from the egg-grown variant at amino acid position 198 (Pro/Thr) in the hemagglutinin gene. The level of neuraminidase activity was highest in egg-grown virus, while MDCK and Vero cell-derived viruses possessed 70 and 90% less activity, respectively. After boosting, each of the vaccines induced high levels of hemagglutinin-inhibiting, neuraminidase-inhibiting, and neutralizing antibodies that provided complete protection from MDCK-grown virus challenge. Mammalian cell-derived virus vaccines induced serum antibodies that were more cross-reactive, while those induced by egg-grown virus vaccines were more specific to the homologous antigen. Enzyme-linked immunospot analysis indicated that cell-grown virus vaccines induced high frequencies of immunoglobulin G (IgG)-producing cells directed against both cell- and egg-grown virus antigens, whereas egg-grown virus vaccine induced higher frequencies of IgG- and IgM-producing cells reacting with homologous antigen and low levels of IgG-producing cells reactive with cell-grown viruses. These studies indicate that influenza B virus variants selected in different host systems can elicit different immune responses, but these alterations had no detectable influence on the protective efficacy of the vaccines with the immunization protocol used in this study.  相似文献   

13.
Dengue (DEN) viruses consisting of four distinct serotypes cause diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome in humans. Most of the dengue viruses can be effectively propagated in some mosquito and mammalian cell lines. In this study, we applied microcarrier cell culture technology to study two relevant aspects involving dengue virus, one on biotechnology of cell growth and virus production, and the other on virus biology concerning genetic variation of a virus population. We investigated the growth of C6/36 mosquito cells and Vero cells grown on Cytodex 1 microcarriers. High-titer DEN virus production can be achieved in C6/36 and Vero cells infected at low cell inoculation density, in the lag-phase cell stage, and at low multiplicity of infection (MOI). The maximum titers produced for DEN-1, DEN-3, and DEN-4 viruses were approximately 10- to 10,000-fold lower than for DEN-2 virus produced in C6/36 and Vero cells grown on microcarriers. The DEN-2 virus produced in C6/36 cells displayed far more extensive plaque heterogeneity than in Vero cells. Microcarrier C6/36 mosquito cell culture appeared to be the most effective system for four-serotype DEN virus production. Interestingly, some selected variants of DEN virus may outgrow in Vero cells when using a T-flask culture. These results may provide useful information for DEN vaccine development.  相似文献   

14.
B95-8, an Epstein-Barr virus-transformed marmoset B-lymphoblastoid cell line, and its derivative B95a, capable of attachment to a substrate surface, were 10,000-fold more sensitive to measles virus present in clinical specimens than were Vero cells. B95-8 and B95a cells were thus thought to be useful host cells for the isolation of measles virus. Quantitation of measles virus present in clinical specimens showed that a large quantity of virus, exceeding 10(6) 50% tissue culture infective doses per ml of a nasal-swab eluate, is shed into secretions by patients with acute measles, consistent with the contagiousness of the disease. Measles viruses isolated in B95a cells differed in some biological properties from those adapted to Vero cells. First, the viruses isolated in B95a cells did replicate in Vero cells, but release into the fluid phase was less efficient than that of Vero cell-adapted viruses. Second, minor antigenic differences were found between virus strains isolated in B95a cells and those isolated in Vero cells from the same clinical specimens. Third, the viruses isolated and propagated in B95a cells caused clinical signs in experimentally infected monkeys resembling those of human measles. It was suspected that measles virus is subject to host cell-mediated selection and that the viruses grown in B95a cells are more representative of measles virus circulating among humans than are the viruses selected in Vero cells.  相似文献   

15.
Tseng YF  Hu AY  Huang ML  Yeh WZ  Weng TC  Chen YS  Chong P  Lee MS 《PloS one》2011,6(10):e24057
Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 10(8) TCID(50)/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.  相似文献   

16.
Liu CC  Lee SC  Butler M  Wu SC 《PloS one》2008,3(3):e1810
This work investigated the replication kinetics of the four dengue virus serotypes (DEN-1 to DEN-4), including dengue virus type 4 (DEN-4) recovered from an infectious cDNA clone, in Vero cells and in MRC-5 cells grown on Cytodex 1 microcarriers. DEN-1 strain Hawaii, DEN-2 strain NGC, DEN-3 strain H-87, and DEN-4 strain H-241 , and DEN-4 strain 814669 derived from cloned DNA, were used to infect Vero cells and MRC-5 cells grown in serum-free or serum-containing microcarrier cultures. Serum-free and serum-containing cultures were found to yield comparable titers of these viruses. The cloned DNA-derived DEN-4 started genetically more homogeneous was used to investigate the genetic stability of the virus propagated in Vero cells and MRC-5 cells. Sequence analysis revealed that the DEN-4 propagated in MRC-5 cells maintained a high genetic stability, compared to the virus propagated in Vero cells. Amino acid substitutions of Gly(104)Cys and Phe(108)Ile were detected at 70%, 60%, respectively, in the envelope (E) protein of DEN-4 propagated in Vero cells, whereas a single mutation of Glu(345)Lys was detected at 50% in E of the virus propagated in MRC-5 cells. Sequencing of multiple clones of three separate DNA fragments spanning 40% of the genome also indicated that DEN-4 propagated in Vero cells contained a higher number of mutations than the virus growing in MRC-5 cells. Although Vero cells yielded a peak virus titer approximately 1 to 17 folds higher than MRC-5 cells, cloned DEN-4 from MRC-5 cells maintained a greater stability than the virus from Vero cells. Serum-free microcarrier cultures of MRC-5 cells offer a potentially valuable system for the large-scale production of live-attenuated DEN vaccines.  相似文献   

17.
Over the last decade, adherent MDCK (Madin Darby canine kidney) and Vero cells have attracted considerable attention for production of cell culture-derived influenza vaccines. While numerous publications deal with the design and the optimization of corresponding upstream processes, one-to-one comparisons of these cell lines under comparable cultivation conditions have largely been neglected. Therefore, a direct comparison of influenza virus production with adherent MDCK and Vero cells in T-flasks, roller bottles, and lab-scale bioreactors was performed in this study. First, virus seeds had to be adapted to Vero cells by multiple passages. Glycan analysis of the hemagglutinin (HA) protein showed that for influenza A/PR/8/34 H1N1, three passages were sufficient to achieve a stable new N-glycan fingerprint, higher yields, and a faster increase to maximum HA titers. Compared to MDCK cells, virus production in serum-free medium with Vero cells was highly sensitive to trypsin concentration. Virus stability at 37 °C for different virus strains showed differences depending on medium, virus strain, and cell line. After careful adjustment of corresponding parameters, comparable productivity was obtained with both host cell lines in small-scale cultivation systems. However, using these cultivation conditions in lab-scale bioreactors (stirred tank, wave bioreactor) resulted in lower productivities for Vero cells.  相似文献   

18.
Due to the insufficient supply of embryonated chicken eggs, the preparation of large quantities of inactivated influenza vaccines will require an alternative virus culture system after the emergence or reemergence of a pandemic influenza virus. The Vero cell is one of the ideal options since it was used for producing many kinds of human vaccines. However, most of the influenza viruses can not grow well in Vero cells. To develop a new influenza vaccine with Vero cells as a substrate, the virus needs to adapt to this cell substrate to maintain high growth characteristics. By serial passages in Vero cells, the B/Yunnan/2/2005va (B) strain was successfully adapted to Vero cells, with the hemagglutination titer (HAT) of the virus reaching 1:512. The high growth characteristic of this strain is stable up to 21 passages. The strain was identified by hemagglutination inhibition (HAI) test and sequencing respectively; the HA1 gene sequence of the virus was cloned and analyzed. The screening and establishment of high growth B virus provides an important tool for influenza vaccine production in Vero cells.  相似文献   

19.
MedImmune Vaccines has engineered a live, attenuated chimeric virus that could prevent infections caused by parainfluenza virus type 3 (PIV3) and respiratory syncytial virus (RSV), causative agents of acute respiratory diseases in infants and young children. The work here details the development of a serum-free Vero cell culture production platform for this virus vaccine candidate. Efforts to identify critical process parameters and optimize culture conditions increased infectious virus titers by approximately 2 log10 TCID50/ml over the original serum-free process. In particular, the addition of a chemically defined lipid concentrate to the pre-infection medium along with the shift to a lower post-infection cultivation temperature increased virus titers by almost 100-fold. This improved serum-free process achieved comparable virus titers to the serum-supplemented process, and demonstrated consistent results upon scale-up: Vero cultures in roller bottles, spinner flasks and bioreactors reproducibly generated maximum infectious virus titers of 8 log10 TCID50/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号