首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
The metabolism of polyphosphoinositides was examined in human platelets activated by thrombin. The addition of thrombin to [3H]glycerol-labeled platelets induced an initial loss and a subsequent increase of the radioactivity in phosphatidylinositol-4,5-bisphosphate (TPI) without any significant change in phosphatidylinositol-4-phosphate (DPI). A marked enhancement of [32P]Pi incorporation into TPI occurred in parallel with an increase in this lipid content, which was accompanied with a conccurent decrease in phosphatidylinositol (PI). The rate of this subsequent increase in TPI was smaller than that observed in [3H]arachidonic acid-labeled platelets, suggesting that formed TPI in activated platelets may contain much greater amount of arachidonate than preexisting TPI in resting platelets. These data indicate that thrombin causes a rapid change in TPI metabolism (initial degradation of preexisting TPI and subsequent production of arachidonate-rich TPI), which might be a primary candidate to modulate thrombin-induced function in human platelets.  相似文献   

2.
The addition of thrombin to human platelets prelabeled with 32Pi led to significant loss of radioactivity in phosphatidylinositol 4,5-bisphosphate within 5 s, followed by recovery or even increase by 2 min. Loss of label from phosphatidylinositol phosphate was much less marked. Stimulated loss of label from phosphatidylinositol was not seen, while labeled phosphatidate increased severalfold. The principal labeled water-soluble phosphates observed, in addition to 32Pi and [32P] ATP, co-migrated with inositol diphosphate and inositol triphosphate. This suggests that a pool of polyphosphoinositides is constantly undergoing phosphodiesteratic cleavage and resynthesis. Thrombin addition led to rapid increase in radioactivity in inositol triphosphate, but not in inositol diphosphate. We conclude that this early consequence of the thrombin-platelet interaction is the result of an increase in the phosphodiesteratic cleavage of phosphatidylinositol bisphosphate.  相似文献   

3.
The uptake of [32P]phosphate by human, gel-filtered blood platelets and its incorporation into cytoplasmic ATP and polyphosphoinositides was studied. In unstimulated platelets, uptake was Na+o-dependent and saturable at approximately 20 nmol/min/10(11) cells with a half-maximal rate at 0.5 mM extracellular phosphate. Upon stimulation with thrombin or collagen, net influx of [32P]Pi was accelerated 5- to 10-fold. With thrombin, [32P]Pi efflux was also increased. After the first 2 min, efflux exceeded influx, resulting in the net release of [32P]Pi from the platelets. Since the stimulus-induced burst in [32P]Pi uptake paralleled the secretory responses, it might be an integral part of stimulus-response coupling in platelets. The stimulus-induced burst in net [32P]Pi uptake led to an enhanced labeling of metabolic ATP, which was already detectable at 5 s after stimulation with thrombin. Concomitantly, the incorporation of [32P]Pi into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was accelerated. The thrombin-induced increase in specific 32P radioactivity of cytoplasmic ATP fully accounted for the simultaneous increase in specific 32P radioactivity of these phosphoinositides. In studying the extent of 32P labeling of phosphorylated compounds in response to a cellular stimulus, it is therefore essential to measure the effect of the stimulus on the specific radioactivity of cytoplasmic ATP.  相似文献   

4.
Human platelets were labelled with [32P]Pi and [3H]glycerol before gel filtration. In unstimulated cells, the specific 32P radioactivity in phosphatidic acid (PtdOH) was similar to that of phosphatidylinositol (PtdIns) but only 4% of that of the gamma-phosphate of ATP. Upon 3 min of stimulation with 0.5 U/ml of thrombin, there was a 20-fold increase in specific 32P radioactivity of PtdOH which approached that of the ATP gamma-phosphate. Based on constant rates of synthesis and removal, this thrombin-induced increase in specific 32P radioactivity in PtdOH allowed us to calculate the flux of phosphate through PtdOH upon stimulation. Synthesis and removal occurred at rates of 107 and 52 nmol min-1/10(11) cells, respectively. The specific [3H]glycerol radioactivity was similar in PtdIns, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in unstimulated platelets. In PtdOH, it was 50% of that of the inositol phospholipids. Thrombin stimulation induced no changes in the specific 3H radioactivity of the inositol phospholipids whereas specific [3H]PtdOH increased to the level of these lipids. It is concluded that PtdIns, PtdInsP and PtdInsP2 exist in a metabolic homogenous pool in human platelets.  相似文献   

5.
1. Gel-filtered human platelets prelabeled with [32P]Pi or [3H]glycerol were exposed to 0-0.3 U/ml of thrombin and analyzed for radioactivities and masses in the phosphoinositides, inositol trisphosphates (IP3), phosphatidic acid (PA) and diacylglycerol (DAG) at 15 and 180 sec of stimulation. 2. At thrombin concentrations below 0.1 U/ml, PA and IP3 accumulated in equimolar amounts. 3. The production and disappearance of the metabolites of the polyphosphoinositide cycle was balanced during 180 sec of stimulation with 0.03-0.1 U/ml of thrombin. 4. Under these conditions no increase in [3H]DAG or [3H]monoacylglycerol could be detected. 5. The data indicate that all DAG is converted to PA and support our conclusion that phosphatidylinositol 4,5-bisphosphate represents the major source for production of DAG upon stimulation of human platelets with low concentrations of thrombin.  相似文献   

6.
We have studied synergism between adrenaline (epinephrine) and low concentrations of thrombin in gel-filtered human platelets prelabelled with [32P]Pi. Suspensions of platelets, which did not contain added fibrinogen, were incubated at 37 degrees C to measure changes in the levels of 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) and phosphatidate (PA), aggregation and dense-granule secretion after stimulation. Adrenaline alone (3.5-4.0 microM) did not cause a change in any parameter (phosphoinositide metabolism, aggregation and dense-granule secretion), but markedly enhanced the thrombin-induced responses over a narrow range of thrombin concentrations (0.03-0.08 units/ml). The thrombin-induced hydrolysis of inositol phospholipids by phospholipase C, which was measured as the formation of [32P]PA, was potentiated by adrenaline, as was the increase in the levels of [32P]PIP2 and [32P]PIP. The presence of adrenaline caused a shift to the left for the thrombin-induced changes in the phosphoinositide metabolism, without affecting the maximal levels of 32P-labelled compounds obtained. A similar shift by adrenaline in the dose-response relationship was previously demonstrated for thrombin-induced aggregation and dense-granule secretion. Also, the narrow range of concentrations of thrombin over which adrenaline potentiates thrombin-induced platelet responses is the same for changes in phosphoinositide metabolism and physiological responses (aggregation and dense-granule secretion). Our observations clearly indicate that adrenaline directly or indirectly influences thrombin-induced changes in phosphoinositide metabolism.  相似文献   

7.
The metabolic activity of the polyphosphoinositol lipids in unstimulated human platelets was studied by short-term labelling with [32P]Pi, by replacement of [32P]Pi from pre-labelled platelets with unlabelled phosphate, and by depriving the cells of metabolic ATP. Under short-term labelling conditions, the 4- and 5-phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] had the same specific 32P radioactivity as the gamma-phosphate of metabolic ATP. The specific 32P radioactivity of the 1-phosphates of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2 was similar, but only 4-13% compared to that of the ATP-gamma-phosphate. When [32P]Pi pre-labelled platelets were incubated with up to 25 mM of unlabelled phosphate, the displacement of the 32P label from PtdIns4P, PtdIns(4,5)P2 and metabolic ATP followed similar kinetics. Inhibition of ATP regeneration in platelets pre-labelled with [32P]Pi resulted in a rapid fall in metabolic ATP with a much slower fall in [32P]PtdIns(4,5)P2, whereas [32P]PtdIns4P increased initially. However, ATP turnover was not abolished, as indicated by the marked (25% of the control) incorporation of extracellular [32P]Pi into PtdIns4P and PtdIns(4,5)P2 in metabolically inhibited platelets. This low phosphate turnover may explain the relative resistance of PtdIns4P and PtdIns(4,5)P2 to metabolic inhibition. We conclude that PtdIns4P and PtdIns(4,5)P2 are present as a single metabolic pool in human platelets. Turnover of the 4- and 5-phosphates of PtdIns4P and PtdIns(4,5)P2 in unstimulated platelets is as rapid as that of the gamma-phosphate of metabolic ATP, and accounts for about 7% of basal ATP consumption.  相似文献   

8.
When washed rat platelets (1.5 x 10(9)/ml) were stimulated by a threshold concentration of thrombin (0.3 unit/ml) or collagen (10 micrograms/ml), a lag period of about 10 or 30 s, respectively, was seen before the start of aggregation. During the lag period, [32P]phosphatidylinositol 4,5-bisphosphate was degraded as the earliest event within 5-10 s of addition of the stimulus. However, though the extent of phosphatidylinositol 4,5-bisphosphate degradation within 10 s of addition of collagen was greater than that within 20 s of addition of thrombin (0.3 unit/ml), a lag of about 20 s remained before the initiation of aggregation by collagen. This casts doubt on the hypothesis that the stimulus-dependent phosphatidylinositol 4,5-bisphosphate breakdown induces the aggregation of platelets. Phosphatidylinositol labeled with 32Pi or [1-14C]arachidonic acid was scarcely degraded during the lag period. As aggregation proceeded, [14C-arachidonic acid]phosphatidylinositol was degraded with generation of diacylglycerol, phosphatidic acid, arachidonic acid and its metabolites. The maximum aggregation by collagen of rat platelets in which arachidonic acid of phospholipids was replaced in vivo with eicosapentaenoic acid was reduced, but that by thrombin was not, though reduction of thromboxane A2 generation was caused by both stimuli. Indomethacin also fully inhibited the aggregation induced by collagen, but not that induced by thrombin. Hence, thromboxane A2 is required for full aggregation by collagen, but not that by thrombin. These results indicate that thrombin-induced phosphoinositide metabolism may proceed independently of aggregation.  相似文献   

9.
Platelet-activating factor stimulates phosphatidylinositol turnover in human platelets as indicated by [32P]phosphatidate accumulation in platelets pre-labelled with [32P]Pi, and by [3H]phosphatidate accumulation and [3H]phosphatidylinositol loss in platelets pre-labelled with [3H]arachidonate. These effects of platelet-activating factor are direct and are independent of the production and/or release of endogenous platelet agonists such as ADP, 5-hydroxytryptamine and thromboxane A2.  相似文献   

10.
The effects of resveratrol (trans-3,4′,5-trihydroxystilbene) on activation responses and the polyphosphoinositide metabolism in human blood platelets have been studied. Resveratrol partially inhibited secretory responses (liberation of dense granule nucleotides and lysosomal acid hydrolases), microparticle formation and protein phosphorylations induced by thrombin. The effects of resveratrol on phosphoinositide metabolites, phosphatidate (PtdOH), phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate (PtdIns-4(5)-P), phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2), phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) were monitored in blood platelets prelabelled with [32P]Pi. Resveratrol not only inhibited the marked increase in levels of PtdOH in platelets activated by thrombin (0.1 U/ml) but it decreased the steady state levels of the other polyphosphoinositide metabolites. The distribution of 32P in phosphoinositides in activated platelets was consistent with inhibition of CDP-DAG inositol transferase and a weak inhibition of PtdIns-4(5)-P kinase. These observations show that resveratrol has a profound effect on phospholipids, particularly on polyphosphoinositide metabolism, and may decrease the amount of PtdIns-4,5-P2 available for signalling in these cells.  相似文献   

11.
Thrombin-induced changes in arachidonate content of platelet phospholipids were quantitated to establish the ultimate origins of this eicosanoid precursor. Fifteen seconds following thrombin addition (15 U/5 X 10(9) platelets), phosphatidylcholine lost 11.8 nmol of arachidonate and phosphatidylethanolamine lost 10.5 nmol. Arachidonate in phosphatidate, phosphatidylinositol, and phosphatidylinositol-4,5-bisphosphate combined decreased by 11.0 nmol. Increases in free and oxygenated arachidonate (41 nmol) exceeded decreases in inositides. Thus phospholipase A2 released at least twice as much arachidonate as phospholipase C-diglyceride lipase. Phosphatidylinositol-4-phosphate levels remained unchanged upon stimulation. Therefore, increases in phosphatidylinositol-4,5-bisphosphate indicated the minimum rate of phosphorylation of phosphatidylinositol to resynthesize phosphatidylinositol-4,5-bisphosphate, following stimulus-induced breakdown by phospholipase C. Phosphatidylinositol-4, 5-bisphosphate increased 1.4 nmol between 10 and 15 sec following thrombin, markedly less than phosphatidylinositol decreased (2.1 nmol). This could be due to phospholipase A2, in addition to phospholipase C, acting directly on phosphatidylinositol to a greater extent than estimated by accumulation of lysophosphatidylinositol, degraded rapidly by lysophospholipase. Thus, upon high-dose thrombin stimulation of human platelets inositide metabolism via phospholipase C directs initial formation of intracellular second messengers, and sequentially, or in parallel, arachidonate release by phospholipase A2 supplies the larger proportion of arachidonate for syntheses of eicosanoids involved in intercellular communication.  相似文献   

12.
Human platelets that had been prelabelled with [32P]Pi were stimulated with trombin in the presence or absence of neomycin, prostaglandin E1 (PGE1) or chlorpromazine. The content of [32P]Pi in phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate and phosphatidic acid (PA) were determined. The data demonstrate that PGE1 and chlorpromazine but not neomycin interfere with the tight metabolic relationship that exists between the inositol phospholipids and PA in thrombin-stimulated platelets [(1989) Biochem. J. 263, 621-624]. Our results therefore indicate that neomycin does not inhibit signal transduction in intact platelets at the level of the inositol phospholipid metabolism.  相似文献   

13.
Increasing concentrations of chlorpromazine (30-500 microM) caused a progressive lysis of gel-filtered platelets, as monitored by the extracellular appearance of cytoplasmic ([14C]adenine-labelled) adenine nucleotides. The chlorpromazine-induced lysis was markedly enhanced by thrombin and phorbol ester, and complete cytolysis was found at chlorpromazine concentrations of 100 microM and above in the presence of thrombin. At non-lytic concentrations, chlorpromazine caused a dramatic increase in the thrombin- or phorbol ester-mediated incorporation of 32P into phosphatidylinositol 4-phosphate and, to a lesser extent, into phosphatidylinositol 4,5-bisphosphate in platelets pulse-labelled with [32P]Pi. Chlorpromazine alone also caused an incorporation of 32P into the phosphoinositides. Non-lytic concentrations of chlorpromazine had no effect on the phosphorylation of the 47 kDa protein (regarded as the substrate for protein kinase C), but markedly inhibited the accompanying secretion of ATP + ADP and beta-hexosaminidase when platelets were incubated with 0.17 microM-phorbol ester or 0.1-0.2 unit of thrombin/ml. At lower concentrations of thrombin, chlorpromazine did not inhibit, but slightly enhanced, secretion. A protein of 82 kDa was phosphorylated during the interaction of platelets with thrombin and phorbol ester, and this phosphorylation was enhanced by chlorpromazine (non-lytic). These results suggest that the previously reported inhibition of protein kinase C by chlorpromazine is probably non-specific and due to cytolysis. However, since non-lytic concentrations of chlorpromazine inhibit secretion, but not protein kinase C, in platelets, activation of protein kinase C is not involved in the stimulation-secretion coupling, or chlorpromazine acts at a step after kinase activation. Possible mechanisms of this inhibition by chlorpromazine are discussed in the light of its effect on phosphoinositide metabolism and protein phosphorylation.  相似文献   

14.
1. By rapid fractionation of blood platelet lysates on Percoll density gradients at alkaline pH (9.6), a very pure plasma-membrane fraction was obtained, as well as discrimination between endoplasmic reticulum and lysosomes. 2. Labelling of intact platelets with [32P]Pi followed by subcellular fractionation showed an exclusive localization of all inositol lipids in the plasma membrane. 3. Preincubation of whole platelets with myo-[3H]inositol in a buffer containing 1 mM-MnCl2 allowed incorporation of the label into PtdIns (phosphatidylinositol) of both plasma and endoplasmic-reticulum membrane, whereas [3H]PtdIns4P (phosphatidylinositol 4-phosphate) and [3H]PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) were exclusively found on the plasma membrane. 4. It is concluded that PtdIns4P and PtdIns(4,5)P2 are exclusively localized in the plasma membrane, whereas PtdIns is present in both plasma and endoplasmic-reticulum membranes. This could provide an explanation for previously reported data on hormone-sensitive and -insensitive inositol lipid pools.  相似文献   

15.
Thrombin stimulation of [32P]-prelabeled platelets induces a rapid decrease of the radioactivity from phosphatidylinositol-4,5-bisphosphate. No significant change is observed in phosphatidylinositol-4-monophosphate. The initial, thrombin-induced decrease of phosphatidylinositol-4,5-bisphosphate is not inhibited by cytochalasin D or by compounds that interfere with the mobilization of Ca2+ such as 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, the calmodulin-antagonist, trifluoperazine, prostacyclin and cyclic AMP. Our information indicates that the rapid loss of phosphatidylinositol-4,5-bisphosphate is linked to receptor activation and insensitive to Ca2+-mobilization.  相似文献   

16.
Thrombin rapidly induces the formation of labeled phosphatidic acid from platelets prelabeled with [17C]arachidonate or 32PO34- and specifically decreases by 50--75% the content of phosphatidylinositol. Ionophore A23187 also stimulates phosphatidate labeling, but less effectively than thrombin. This effect on phosphatidic acid is blocked by increasing the levels of cyclic AMP by preincubation with dibutyryl cyclic AMP, cyclic AMP-phosphodiesterase inhibitors or prostacyclin. Indomethacin and eicosatetraynoic acid do not alter the production of phosphatidate, indicating independence from cyclooxygenase or lipoxygenase products. Increased turnover of [14C]- or [32P]phosphatidate occurs within 2--5 s after platelet activation by thrombin and is observed before endogenous, 14C-labeled arachidonate can be detected. The rate of phosphatidate formation parallels the induced rate of serotonin release. Release of [3H]serotonin is not affected by eicosatetraynoic acid. Phosphatidate production reflects the generation of diacylglycerol by C-type phospholipase degradation of phosphatidylinositol. Diacylglycerol and phosphatidic acid may participate in the membrane modification related to the early changes in platelet shape, release reactions or aggregation which occur on stimulation.  相似文献   

17.
We have examined thrombin-induced metabolism of phosphoinositides in the platelets from fifteen NIDDM (non-insulin-dependent diabetes mellitus) patients and fifteen healthy subjects (control). The diabetic patients were divided into two groups. One group (group I) had diabetic retinopathy (microangiopathy) and the other group (group II) had atherosclerosis of great vessels (macroangiopathy). In platelets incubated with [32P] orthophosphate for 80 min, the incorporation of 32P radioactivity into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) was significantly lower in the group II than in the control. The addition of thrombin induced a marked decrease in PIP2 radioactivity at 10 sec in platelets from group I compared with that from the control. These results suggest that the breakdown of polyphosphoinositides is increased in platelets from diabetic subjects with retinopathy, and also that the formation of polyphosphoinositides is decreased in the platelets from diabetic subjects with macroangiopathy.  相似文献   

18.
We studied the possibility that hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] may be the initiating event for the increase in [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) during carbachol and pancreozymin (cholecystokinin-octapeptide) action in the rat pancreas. After prelabelling acini for 2h, [32P]Pi incorporation into PtdA, PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P) had reached equilibrium. Subsequent addition of carbachol or pancreozymin caused 32P in PtdIns(4,5)P2 to decrease by 30-50% within 10-15 s, and this was followed by sequential increases in [32P]Pi incorporation into PtdA and PtdIns. Similar changes in 32P-labelling of PtdIns4P were not consistently observed. Confirmation that the decrease in 32P in chromatographically-purified PtdIns(4,5)P2 reflected an actual decrease in this substance was provided by the fact that similar results were obtained (a) when PtdIns(4,5)P2 was prelabelled with [2-3H]inositol, and (b) when PtdIns(4,5)P2 was measured as its specific product (glycerophosphoinositol bisphosphate) after methanolic alkaline hydrolysis and ion-exchange chromatography. The secretogogue-induced breakdown of PtdIns(4,5)P2 was not inhibited by Ca2+ deficiency (severe enough to inhibit amylase secretion and Ca2+-dependent hydrolysis of PtdIns), and ionophore A23187 treatment did not provoke PtdIns(4,5)P2 hydrolysis. The increase in the hydrolysis of PtdIns(4,5)P2 and the increase in [32P]Pi incorporation into PtdA commenced at the same concentration of carbachol in dose-response studies. Our findings suggest that the hydrolysis of PtdIns(4,5)P2 is an early event in the action of pancreatic secretogogues that mobilize Ca2+, and it is possible that this hydrolysis may initiate the Ca2+-independent labelling of PtdA and PtdIns. Ca2+ mobilization may follow these responses, and subsequently cause Ca2+-dependent hydrolysis of PtdIns and exocytosis.  相似文献   

19.
The effect of chronic streptozotocin-induced diabetes on phospholipid metabolism in rat sciatic nerve in vitro was investigated. In normal nerve incubated for 2 h in Krebs-Ringer-bicarbonate buffer containing [32P]orthophosphate, radioactivity was primarily incorporated into phosphatidylinositol-4,5-bisphosphate and phosphatidylcholine. Smaller amounts were present in phosphatidylinositol-4-phosphate, phosphatidylinositol, and phosphatidic acid. As compared to controls, phosphatidylinositol-4,5-bisphosphate in nerves from animals made diabetic 2, 10, and 20 weeks earlier accounted for 30-46% more of the isotope, expressed as a percentage, incorporated into all phospholipids. In contrast, the proportion of radioactivity in phosphatidylcholine decreased by 10-25%. When the results were expressed as the quantity of phosphorus incorporated into phospholipid, only phosphatidylinositol-4,5-bisphosphate displayed a change. The amount of isotope which entered this lipid increased 60% and 67% for 2- and 10-week diabetic animals, respectively. Increased phosphatidylinositol-4,5-bisphosphate labeling was observed when epineurial-free preparations were used or when the composition of the incubation medium was varied. Sciatic and caudal nerve conduction velocities were decreased after 10 and 20 weeks but were unchanged after 2 weeks. We conclude that an increase in the turnover of phosphatidylinositol-4,5-bisphosphate in sciatic nerve from streptozotocin-diabetic rats appears relatively early and persists throughout the course of the disease. This metabolic alteration may be related to a primary defect responsible for the accompanying deficient peripheral nerve function.  相似文献   

20.
The labelling of the phosphoinositides and phosphatidic acid in washed rabbit platelets incubated with [32P]phosphate or [3H]glycerol was studied in the presence of isotope and after unincorporated isotope had been removed. With both isotopes the increase in the specific radioactivity of phosphatidylinositol 4,5-bisphosphate (PIP2) lagged behind that of phosphatidylinositol 4-phosphate (PIP) but the specific radioactivity remained higher after unincorporated isotope had been removed. This result was consistent with the presence of a second pool of PIP2, which interconverted slowly with the pool of PIP2 which was in direct equilibrium with PIP, proposed to explain the increase in specific radioactivity of PIP2 which accompanies the decrease in amount of PIP2 at 10 s in ADP-stimulated platelets. In platelets labelled with [3H]glycerol, the specific radioactivity of PIP2 became higher than that of PIP and the specific radioactivity of PIP became higher than that of phosphatidylinositol (PI). These results were interpreted to indicate that there were two pools of PIP; of these the pool with the higher specific radioactivity was the precursor of PIP2. Similarly, two pools of PI were proposed. The presence of pools of the phosphoinositides with different specific radioactivities necessitates the measurement of chemical amount of these compounds when studying the effect of stimulation of the platelets, since changes in labelling may not accurately reflect changes in the amount of the phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号