首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human high density lipoprotein (HDL), devoid of apolipoproteins E or B, binds with high affinity and specificity to cultured cells derived from several tissues. In order to investigate the ligand specificity of the putative receptor, we have performed competitive inhibition studies to identify the components of high density lipoprotein that bind to cell surfaces of rat adrenal cortical cells and human skin fibroblasts. Radiolabeled HDL3 was displaced with unlabeled apolipoprotein-dimyristoylphosphatidylcholine recombinant particles containing AI, AII, CIII-1, and E apolipoproteins, but not by dimyristoylphosphatidylcholine complexed to albumin or by low density lipoprotein. Because exchange may readily occur between apolipoproteins in HDL and in recombinants this observation may not be truly representative of ligand competition. Further experiments using Fab fragments prepared from pure IgG to each apolipoprotein showed that binding of radioiodinated HDL to cells was suppressed following preincubation of HDL with Fab fragments raised against apolipoproteins AI or AII but not against apolipoproteins E or CIII-1 or albumin. In additional studies with apolipoprotein recombinants specific saturable binding was demonstrated between apo-AI or -AII recombinants and adrenocortical cells whereas binding of apo-CIII-2 was characterized by a large nonsaturable component which almost equaled the specific binding. The data, therefore, provide evidence for the involvement of the two major apolipoproteins (AI and AII) in HDL recognition by cellular receptors.  相似文献   

3.
The two major apolipoproteins of plasma high-density lipoproteins (HDL) are apolipoprotein AI (apo AI) and AII (apo AII). The apo AI and the correctly oriented apo CIII genes separated by 2.6 kb were obtained by fusion of two human lambda-genomic clones. The apo AII gene was isolated as a 3 kb clone. These apolipoprotein genes have been injected independently and together into Xenopus laevis oocytes and their expression studied. Both apolipoprotein genes were transcribed and translated into their preproforms and processed in Xenopus laevis oocytes to their proforms. They were secreted into the medium associated with newly synthesized phospholipids and neutral lipids as particles floating in the high-density lipoprotein range between 1.12 and 1.21 g/ml. Secreted apo AI is associated mainly with newly synthesized phosphatidylethanolamine and little triglyceride, apo AII with phosphatidylethanolamine, lysophosphatidylethanolamine and neutral lipids. Simultaneous injection of the apo AI and apo AII genes led to the secretion of both apoproteins which separated into two bands during CsCl-density gradient centrifugation. The heavier particles were associated with proapo AI and AII, phosphatidylethanolamine (greater than 90%) and traces of lysophosphatidylethanolamine as lipid components. Proapo AII was immunoprecipitated from the less dense fraction and found to be mainly associated with lysophosphatidylethanolamine. Radiolabelled newly synthesized apolipoproteins in secreted particles were characterized by immunoprecipitation after delipidation of the secreted lipoprotein particles. The oocyte-system proved very suitable for studies of the expression of serum apolipoprotein genes, the assembly of the apolipoproteins with specific lipids to lipoprotein particles and their secretion.  相似文献   

4.
5.
The possible evolutionary origin of apolipoproteins was studied by comparing the primary structures of different plasma apolipoproteins and other phospholipid-binding proteins. Apolipoprotein A-I (ApoA-I) and apolipoprotein A-II (ApoA-II) of human high density lipoprotein (HDL) are related. The resemblance of these two HDL apolipoproteins are apparently restricted to the carboxyl terminal regions suggesting that these portions of the molecules are derived from the same ancestor. The homologous carboxyl terminal segments may be involved in the regulation of HDL metabolism or in the interaction with phospholipids.  相似文献   

6.
A method is described for the isoelectric focusing (IEF) of lipoproteins on thin films of agarose. Within a pH gradient of 4.60-5.30 both high-density lipoproteins 2 and 3 (HDL2 and HDL3) are resolved into more than 10 fractions which could be stained either for protein or for lipids. The isoelectric focusing patterns for HDL2 and HDL3 are similar although HDL2 appears richer in the more alkaline bands. Narrow film strips from the IEF separation of HDL2 and HDL3 were interfaced with various agarose plates containing antisera against apolipoproteins apoAI, apoAII and apoCIII either alone or in combination, to provide two-dimensional IEF immunoelectrophoresis patterns. This technique demonstrated that apoAI and apoAII were present throughout the IEF gel for both subclasses of HDL. It also provided evidence for the existence of lipoproteins containing both apoAI and apoAII and other lipoproteins present in the alkaline region of the gel which contained apoAI but no apoAII. ApoCIII was found mostly in acidic lipoproteins and was not distributed identically in HDL2 and HDL3. The lipoproteins separated by IEF on agarose were also analysed by two-dimensional IEF-SDS electrophoresis and the individual apolipoproteins were identified by reaction with antibodies to apolipoproteins AI, AII, CI, CII, CIII, D, and E. This technique confirmed that in IEF of HDL, apoAI extended throughout the spectrum of lipoproteins whereas apoE was only present in alkaline lipoproteins and apoD was only present in acidic lipoproteins. IEF on agarose of either HDL2 or HDL3 allowed us to collect eight different fractions, which have the same pI in either lipoprotein class. The apolipoprotein composition of each isolated band was analysed by electroimmuno-assays for apolipoproteins AI, AII, CI, CII, CIII, D, and E and the results expressed as the ratio of the measured apolipoprotein to measured apoAI. In both HDL2 and HDL3, acidic lipoprotein fractions were enriched in apoAII, apoCIII and apoD. ApoCII and apoCII were not similarly distributed in HDL2 and HDL3 subfractions whereas the apoCI distribution was similar in both classes. Noteworthy in all experiments was the difference in the distributions of apoCI, apoCII, and apoCIII in HDL2 and HDL3, which indicated that the existence of a lipoprotein containing simultaneously CI, CII and CIII can only account for a small fraction of these apolipoproteins. Therefore these experiments substantiate the theory of the protein basis of HDL heterogeneity and suggest that the majority of apolipoproteins are present in complexes which upon IEF result in lipoprotein fractions of identical pI for both HDL2 or HDL3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The differential rate equations describing the compartmental model of human high-density lipoprotein (HDL) were integrated by means of Laplace transforms and an exponential equation was obtained for each of the three compartments. These equations were used to fit the observed plasma decay data and give estimates for the rate constants of the system by means of a written computer program. Furthermore, these estimates were used to calculate the exponential constants of the integrated equations. Consequently, the amount of label in any of the intravascular, extravascular, and urine compartments can be calculated as a fraction of the original dose of label at any time point. This method was tested using data for the (AI)HDL subclass because it contains only apolipoprotein A-I as the major apolipoprotein and does not contain apolipoprotein A-II. The calculated plasma and urine radioactivity data were compared with the experimentally obtained data from two normolipoproteinemic subjects and found to be in good agreement. The significance of this method is its application to the analysis of the decay data of the individual apolipoproteins of (AI + AII) HDL subclass where the urinary radioactivity data resulting from the individual apolipoprotein breakdown on the native particle cannot be measured experimentally at present. Such data are essential for the detailed calculation of the kinetic parameters of these apolipoproteins.  相似文献   

8.
Inhibition of human and rat lipoprotein lipase by high-density lipoprotein   总被引:1,自引:0,他引:1  
The hydrolysis in vitro of preactivated Intralipid (an artificial triacylglycerol-phospholipid emulsion) by rat adipose tissue lipoprotein lipase is inhibited by rat high-density lipoprotein (HDL). The aim of this work was to investigate whether human lipoprotein lipase was also inhibited, the mechanism of inhibition of the rat enzyme by HDL, and the role of the various individual apolipoproteins. Both human and rat lipoprotein lipase from post-heparin plasma are inhibited by HDL. This inhibition is considerably decreased if the HDL is first made 'apolipoprotein poor' by removal of some transferable apolipoproteins. In contrast, both native and apolipoprotein poor HDL inhibit the hydrolysis of Intralipid by rat hepatic lipase. Apolipoproteins C and E, either free in solution or attached to lipid vesicles, inhibit the hydrolysis of activated Intralipid by rat lipoprotein lipase to a maximum of 85% and 50%, respectively. Apolipoprotein A attached to vesicles gives little inhibition. HDL apolipoprotein and apolipoprotein C compete with the substrate for binding to lipoprotein lipase with apolipoprotein C having a higher affinity for the enzyme than HDL apolipoprotein. The inhibition of lipoprotein lipase by HDL can be explained by the association of the constituent apolipoproteins, in particular apolipoprotein C, with the enzyme so that there is less enzyme available to act on substrate.  相似文献   

9.
Guha M  Gao X  Jayaraman S  Gursky O 《Biochemistry》2008,47(44):11393-11397
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.  相似文献   

10.
Human high-density lipoprotein (HDL) and its apolipoproteins A-I and A-II inhibit complement-mediated lysis of human and sheep erythrocytes. This inhibitory activity under study is exerted after C9 is bound to membrane-associated C5b-8 complexes but prior to completed assembly and insertion of the C5b-9 complex. In this paper, we define some structure-activity relationships of the inhibitory moiety. With the exception of weak lytic inhibitory activity found in LDL/VLDL pools and in some unconcentrated minor fractions of plasma obtained by hydrophobic chromatography, all inhibitor activity was found in fractions which contained either apolipoprotein A-I, apolipoprotein A-II, or both. Intact HDL has a high level of inhibitor activity but delipidation by chloroform-methanol extraction was associated with an increase in activity on a protein-weight basis. Purified apolipoprotein A-I and apolipoprotein A-II exhibited equal inhibitory activity, greater than that exhibited by intact HDL. Nevertheless, ultracentrifugal fractions in which no free apolipoproteins could be demonstrated still possessed inhibitory activity. These experiments suggest that delipidation of HDL is not necessary for expression of inhibitor activity, although we could not rule out the possibility that apolipoproteins in dynamic equilibrium with HDL are responsible for the inhibitor activity observed in whole serum and plasma and in HDL preparations. Limited proteinase digestion completely abolished the inhibitory activity of partially delipidated HDL. Phospholipase C had little or no effect on the inhibitory activity of delipidated HDL, apolipoprotein A-I or apolipoprotein A-II, but reduced the inhibitory activity of intact HDL. These data suggest that the phospholipid polar headgroups are not necessary for inhibitory activity. However, the loss of these headgroups is associated with decreased activity, possibly due to increased hydrophobicity of HDL, or increased association among HDL micelles, and subsequent decrease in effective molar concentration of the inhibitory moiety.  相似文献   

11.
We studied the proteolytic action in vitro of free and alpha 2-macroglobulin-bound porcine pancreatic elastase [EC 3.4.21.11] on the apolipoproteins of plasma: very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL). Polyacrylamide gel electrophoresis, isoelectric focusing and immunodiffusion tests of elastase-treated plasma lipoproteins revealed that apolipoprotein C-II and C-III polypeptides were more susceptible to elastase in free form than plasma apolipoproteins (A-I, A-II, B, and E). Elastase bound to alpha 2-macroglobulin did not show any such activities.  相似文献   

12.
In this study immunological procedures were used to detect and quantify high-density lipoprotein (HDL) particles of differing apolipoprotein A composition. In the plasma of eight healthy female subjects, 45% of the total apolipoprotein A-I existed in particles (called '(AI)HDL') devoid of apolipoprotein A-II. The remainder circulated in association with apolipoprotein A-II at a molar ratio of approximately 1:1. Nicotinic acid selectively raised the plasma apolipoprotein A-I/A-II ratio by increasing the proportion of (AI)HDL particles. Probucol produced the opposite effect, lowering the plasma concentration of these particles. The kinetic properties of apolipoprotein A-I in total HDL and in the (AI)HDL particle were the same despite the fact that apolipoprotein A-I equilibration between these two species was incomplete. Therefore, there appear to be at least two apolipoprotein A-containing particle populations in HDL which are immunochemically and metabolically distinct.  相似文献   

13.
Based upon state of the art biophysical experimentation, this article focuses on the different structural arrangements exchangeable apolipoproteins achieve when placed on Langmuir monolayers and subjected to changes in lateral pressure. We have studied the monolayers of apolipoproteins CI, CIII, AI, AII, and E that show as secondary structure a high percentage of amphipathic alpha-helix. This has been achieved employing techniques such as Brewster angle microscopy, synchrotron X-ray diffraction, and surface pressure measurements. In addition, the lateral order of protein arrays has been also studied by atomic force microscopy. These monolayers show that a phase transition from a two-dimensional disorder fluid to an ordered state is detected at relatively high lateral pressure, where unusual one-dimensional solid phases are discovered. While several helices that conform the apolipoprotein are confined to the interface, others are uniformly tilted toward the hydrophobic air or the phospholipid fatty acid chains. Our results suggest that a similar ordering might also occur when these apolipoproteins are attached to a lipoprotein particle such as a high density lipoprotein (HDL) particle. Therefore, changes from a nascent or discoidal HDL to a mature spherical HDL might in parallel involve structural changes as those described in our Langmuir interfaces. Current experimentation is being carried out in order to elucidate if the structural states already found are related to the efficiency of lipid transfer between lipoprotein particles or lipoproteins and the plasma membrane of cells, as well as receptor ligand recognition.  相似文献   

14.
Physiochemical study of rock crab lipoproteins   总被引:2,自引:0,他引:2  
Physicochemical studies have been carried out on the hemolymph and egg lipoproteins of the rock crab (Cancer antennarius). Analytical ultracentrifugal analyses of vitellogenic female HDL3 revealed the presence of two types of lipoproteins. The first with a sedimentation rate of 5.35 S was comparable to lipoproteins in male and non-vitellogenic female hemolymph. The second with a sedimentation rate of 10.74 S was comparable to the major lipoprotein of egg yolk. A similar comparison could be made following electrophoretic analyses in native polyacrylamide gels. Electrophoresis in SDS-polyacrylamide gels revealed three major apolipoproteins common to egg and vitellogenic HDL3. A fourth apolipoprotein was found in both male and female HDL3. In contrast to mammalian HDL, none of these crustacean apolipoproteins had a molecular weight less than 82 000. One of these apolipoproteins appears to be comparable physicochemically to the enteric form of apolipoprotein B in mammals.  相似文献   

15.
PURPOSE OF REVIEW: The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. The review discusses recent developments in our understanding of how these steps occur, with particular emphasis on the macrophage, the major site of cellular cholesterol accumulation in atherosclerosis. RECENT FINDINGS: ATP binding cassette transporter (ABC) A1 exports cholesterol and phospholipid to lipid-free apolipoproteins, while ATP binding cassette transporter G1 and scavenger receptor BI export cholesterol to phospholipid-containing acceptors. ABCA1-dependent cholesterol export involves an initial interaction of apolipoprotein AI with lipid raft membrane domains, although ABCA1 and most exported cholesterol are not raft associated. ABCG1 exports cholesterol to HDL and other phospholipid-containing acceptors. These include particles generated during lipidation of apoAI by ABCA1, suggesting that the two transporters cooperate in cholesterol export. Scavenger receptor BI is atheroprotective, mediating clearance of HDL cholesterol by the liver. The relative contributions of scavenger receptor BI and ABCG to cholesterol export to HDL from macrophages is unclear and may depend on cellular cholesterol status and the cholesterol gradient between cell and acceptor. SUMMARY: The presence of distinct pathways for cholesterol efflux to lipid-free apolipoprotein AI and phospholipid-containing HDL species clarifies our understanding of reverse cholesterol transport, and provides new opportunities for its therapeutic manipulation.  相似文献   

16.
Whole-irradiated rabbit pre-heparin plasma had an important inhibitory effect on hepatic triacylglycerol lipase and lipoprotein lipase activities, whereas control rabbit pre-heparin plasma slightly inhibited hepatic triacylglycerol lipase activity at a high concentration and enhanced lipoprotein lipase activity. As some apolipoproteins were known to modulate these two lipolytic enzymes, the inhibitory effects of irradiated rabbit plasma were investigated in apolipoproteins. Three apolipoproteins, with isoelectric points of about 6.58, 6.44 and 6.12, characterized by their low content in threonine (threonine-poor apolipoproteins) were produced in high concentrations in rabbit VLDL and HDL after irradiation. The effects of these apolipoproteins on control rabbit post-heparin plasma hepatic triacylglycerol lipase and extrahepatic lipoprotein lipase were studied. Threonine-poor apolipoproteins substantially inhibited the hepatic triacylglycerol lipase activity and enhanced the apolipoprotein C-II-stimulated activity of lipoprotein lipase. The amounts of these apolipoproteins in triacylglycerol-rich lipoprotein particles may determine the lipolytic activity of lipoprotein lipase and hepatic triacylglycerol lipase in triacylglycerol hydrolysis. The existence of another inhibitor of lipoprotein lipase remains to be determined.  相似文献   

17.
Apolipoprotein A-I (apoA-I) was liberated from human high-density lipoprotein (HDL) without exposure to organic solvents or chaotropic salts by the action of isolated insect hemolymph lipid transfer particle (LTP). LTP-catalyzed lipid redistribution results in transformation of HDL into larger, less dense particles accompanied by an overall decrease in HDL particle surface area:core volume ratio, giving rise to an excess of amphiphilic surface components. Preferential dissociation of apolipoprotein versus phospholipid and unesterified cholesterol from the particle surface results in apolipoprotein recovery in the bottom fraction following ultracentrifugation at a density = 1.23 g/mL. ApoA-I was then isolated from other contaminating HDL apolipoproteins by incubation with additional HDL in the absence of LTP, whereupon apolipoprotein A-II and the C apolipoproteins reassociate with the HDL surface by displacement of apoA-I. After a second density gradient ultracentrifugation, electrophoretically pure apoA-I was obtained. Sedimentation equilibrium experiments revealed that apoA-I isolated via this method exhibits a tendency to self-associate in an aqueous solution while its circular dichroism spectrum was indicative of a significant amount of alpha-helix. Both measurements are consistent with that observed on material prepared by denaturation/renaturation. The ability of apoA-I to activate lecithin:cholesterol acyltransferase was found to be similar to that of apoA-I isolated by conventional methods. The present results illustrate that LTP-mediated alteration in lipoprotein particle surface area leads to dissociation of substantial amounts of surface active apoprotein components, thus providing the opportunity to isolate apoA-I without the denaturation/renaturation steps common to all previous isolation procedures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human innate immunity to non-pathogenic species of African trypanosomes is provided by human high density lipoprotein (HDL) particles. Here we show that native human HDLs containing haptoglobin-related protein (Hpr), apolipoprotein L-I (apoL-I) and apolipoprotein A-I (apoA-I) are the principle antimicrobial molecules providing protection from trypanosome infection. Other HDL subclasses containing either apoA-I and apoL-I or apoA-I and Hpr have reduced trypanolytic activity, whereas HDL subclasses lacking apoL-I and Hpr are non-toxic to trypanosomes. Highly purified, lipid-free Hpr and apoL-I were both toxic to Trypanosoma brucei brucei but with specific activities at least 500-fold less than those of native HDLs, suggesting that association of these apolipoproteins within the HDL particle was necessary for optimal cytotoxicity. These studies show that HDLs can serve as platforms for the assembly of multiple synergistic proteins and that these assemblies may play a critical role in the evolution of primate-specific innate immunity to trypanosome infection.  相似文献   

19.
20.
The chemical nature of the trypanocidal factor in human serum was investigated. The results show that although the trypanocidal factor is contained within the high density lipoprotein (HDL) fraction of human serum, it is apparently not one of the major apolipoproteins of the HDL complex such as apolipoprotein A-I, A-II, or apolipoprotein B. The factor would appear to be a minor component of the HDL fraction whose chemical nature is still uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号