首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient potassium current, IK(t), of enzymatically dissociated rat olfactory receptor neurons was studied using patch-clamp techniques. Upon depolarization from negative holding potentials, IK(t) activated rapidly and then inactivated with a time course described by the sum of two exponential components with time constants of 22.4 and 143 ms. Single-channel analysis revealed a further small component with a time constant of several seconds. Steady-state inactivation was complete at -20 mV and completely removed at -80 mV (midpoint -45 mV). Activation was significant at -40 mV and appeared to reach a maximum conductance at +40 mV (midpoint -13 mV). Deactivation was described by the sum of two voltage-dependent exponential components. Recovery from inactivation was extraordinarily slow (50 s at -100 mV) and the underlying processes appeared complex. IK(t) was reduced by 4-aminopyridine and tetraethylammonium applied externally. Increasing the external K+ concentration ([K+]o) from 5 to 25 mM partially removed IK(t) inactivation, usually without affecting activation kinetics. The elevated [K+]o also hyperpolarized the steady-state inactivation curve by 9 mV and significantly depolarized the voltage dependence of activation. Single transient K+ channels, with conductances of 17 and 26 pS, were observed in excised patches and often appeared to be localized into large clusters. These channels were similar to IK(t) in their kinetic, pharmacological, and voltage-dependent properties and their inactivation was also subject to modulation by [K+]o. The properties of IK(t) imply a role in action potential repolarization and suggest it may also be important in modulating spike parameters during neuronal burst firing. A simple method is also presented to correct for errors in the measurement of whole-cell resistance (Ro) that can result when patch-clamping very small cells. The analysis revealed a mean corrected Ro of 26 G omega for these cells.  相似文献   

2.
Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.  相似文献   

3.
The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage- dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from - 50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Messenger RNAs (mRNAs) specific for NGK1 and NGK2 potassium channels were synthesized from complementary DNAs (cDNAs) that had been cloned from mouse neuroblastoma x rat glioma hybrid NG108-15 cells. Outward pottasium currents were evoked by 5 s depolarizing voltage commands in Xenopus oocytes injected with NGK1- or NGK2-specific mRNAs. The NGK1 or NGK2 currents showed different activation and inactivation kinetics, and different pharmacological sensitivities. The threshold potential for activation of the NGK2 current (-14 mV) was more positive than that for the NGK1 (-36 mV). The NGK2 current showed faster inactivation during a 5 s depolarizing pulse than did the NGK1 current. Inactivation was best fit by time constants of 0.37, 1.5 and 19 s for the NGK2 current and 4.4 and 19 s for NGK1. Extracellularly applied tetraethylammonium chloride (TEA) was 1000 times more potent on the NGK2 current than the NGK1 current. Furthermore we examined outward current following co-injection of an equal amount of mRNAs for NGK1 and NGK2. The timecourse of inactivation differed from either alone or from a simple sum of the two individual currents. TEA sensitivity could not be explained by summation of the two homomultimeric channels. These findings suggest that both NGK1 and NGK2 proteins assemble to form heteromultimeric K+ channels in addition to homomultimeric K+ channels. NGK2 channels and the heteromultimeric channels may be responsible for the native transient outward current with slow inactivation in NG108-15 hybrid cells.  相似文献   

5.
Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attached-patch measurements revealed two types of high conductance (100-250 pS) channels, which rapidly activated upon 50-100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3 mM) or high K+ (143 mM) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20-200 msec (depending on the stimulus) upon depolarizing voltage steps from less than -60 mV to greater than -30 mV. It inactivates almost completely with a time constant of 2-3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1-2 sec) followed by a slow phase (greater than 20 sec). The second whole-cell conductance activates at positive membrane potentials of greater than +50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl- or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

6.
We have examined the kinetics of whole-cell T-current in HEK 293 cells stably expressing the alpha1G channel, with symmetrical Na(+)(i) and Na(+)(o) and 2 mM Ca(2+)(o). After brief strong depolarization to activate the channels (2 ms at +60 mV; holding potential -100 mV), currents relaxed exponentially at all voltages. The time constant of the relaxation was exponentially voltage dependent from -120 to -70 mV (e-fold for 31 mV; tau = 2.5 ms at -100 mV), but tau = 12-17 ms from-40 to +60 mV. This suggests a mixture of voltage-dependent deactivation (dominating at very negative voltages) and nearly voltage-independent inactivation. Inactivation measured by test pulses following that protocol was consistent with open-state inactivation. During depolarizations lasting 100-300 ms, inactivation was strong but incomplete (approximately 98%). Inactivation was also produced by long, weak depolarizations (tau = 220 ms at -80 mV; V(1/2) = -82 mV), which could not be explained by voltage-independent inactivation exclusively from the open state. Recovery from inactivation was exponential and fast (tau = 85 ms at -100 mV), but weakly voltage dependent. Recovery was similar after 60-ms steps to -20 mV or 600-ms steps to -70 mV, suggesting rapid equilibration of open- and closed-state inactivation. There was little current at -100 mV during recovery from inactivation, consistent with 相似文献   

7.
8.
Inactivation of currents carried by Ba2+ and Ca2+, as well as intramembrane charge movement from L-type Ca2+ channels were studied in guinea pig ventricular myocytes using the whole-cell patch clamp technique. Prolonged (2 s) conditioning depolarization caused substantial reduction of charge movement between -70 and 10 mV (charge 1, or charge from noninactivated channels). In parallel, the charge mobile between -70 and -150 mV (charge 2, or charge from inactivated channels) was increased. The availability of charge 2 depended on the conditioning pulse voltage as the sum of two Boltzmann components. One component had a central voltage of -75 mV and a magnitude of 1.7 nC/microF. It presumably is the charge movement (charge 2) from Na+ channels. The other component, with a central voltage of approximately - 30 mV and a magnitude of 3.5 nC/microF, is the charge 2 of L-type Ca2+ channels. The sum of charge 1 and charge 2 was conserved after different conditioning pulses. The difference between the voltage dependence of the activation of L-type Ca2+ channels (half-activation voltage, V, of approximately -20 mV) and that of charge 2 (V of -100 mV) made it possible to record the ionic currents through Ca2+ channels and charge 2 in the same solution. In an external solution with Ba2+ as sole metal the maximum available charge 2 of L-type Ca2+ channels was 10-15% greater than that in a Ca(2+)-containing solution. External Cd2+ caused 20-30% reduction of charge 2 both from Na+ and L-type Ca2+ channels. Voltage- and Ca(2+)-dependent inactivation phenomena were compared with a double pulse protocol in cells perfused with an internal solution of low calcium buffering capacity. As the conditioning pulse voltage increased, inactivation monitored with the second pulse went through a minimum at about 0 mV, the voltage at which conditioning current had its maximum. Charge 2, recorded in parallel, did not show any increase associated with calcium entry. Two alternative interpretations of these observations are: (a) that Ca(2+)- dependent inactivation does not alter the voltage sensor, and (b) that inactivation affects the voltage sensor, but only in the small fraction of channels that open, and the effect goes undetected. A model of channel gating that assumes the first possibility is shown to account fully for the experimental results. Thus, extracellular divalent cations modulate voltage-dependent inactivation of the Ca2+ channel. Intracellular Ca2+ instead, appears to cause inactivation of the channel without affecting its voltage sensor.  相似文献   

9.
In whole cell patch clamp recordings on enzymatically dissociated adrenal zona fasciculata (AZF) cells, a rapidly inactivating A-type K+ current was observed in each of more than 150 cells. Activation of IA was steeply voltage dependent and could be described by a Boltzmann function raised to an integer power of 4, with a midpoint of -28.3 mV. Using the "limiting logarithmic potential sensitivity," the single channel gating charge was estimated to be 7.2 e. Voltage-dependent inactivation could also be described by a Boltzmann function with a midpoint of -58.7 mV and a slope factor of 5.92 mV. Gating kinetics of IA included both voltage-dependent and -independent transitions in pathways between closed, open, and inactivated states. IA activated with voltage-dependent sigmoidal kinetics that could be fit with an n4h formalism. The activation time constant, tau a, reached a voltage- independent minimum at potentials positive to 0 mV. IA currents inactivated with two time constants that were voltage independent at potentials ranging from -30 to +45 mV. At +20 mV, tau i(fast) and tau i(slow) were 13.16 +/- 0.64 and 62.26 +/- 5.35 ms (n = 34), respectively. In some cells, IA inactivation kinetics slowed dramatically after many minutes of whole cell recording. Once activated by depolarization, IA channels returned to the closed state along pathways with two voltage-dependent time constants which were 0.208 s, tau rec-f and 10.02 s, tau rec-s at -80 mV. Approximately 90% of IA current recovered with slow kinetics at potentials between -60 and -100 mV. IA was blocked by 4-aminopyridine (IC50 = 629 microM) through a mechanism that was strongly promoted by channel activation. Divalent and trivalent cations including Ni2+ and La3+ also blocked IA with IC50's of 467 and 26.4 microM, respectively. With respect to biophysical properties and pharmacology, IA in AZF cells resembles to some extent transient K+ currents in neurons and muscle, where they function to regulate action potential frequency and duration. The function of this prominent current in steroid hormone secretion by endocrine cells that may not generate action potentials is not yet clear.  相似文献   

10.
In cardiac cells that lack macroscopic transient outward K(+) currents (I(to)), the removal of extracellular Ca(2+) can unmask "I(to)-like" currents. With the use of pig ventricular myocytes and the whole cell patch-clamp technique, we examined the possibility that cation efflux via L-type Ca(2+) channels underlies these currents. Removal of extracellular Ca(2+) and extracellular Mg(2+) induced time-independent currents at all potentials and time-dependent currents at potentials greater than -50 mV. Either K(+) or Cs(+) could carry the time-dependent currents, with reversal potential of +8 mV with internal K(+) and +34 mV with Cs(+). Activation and inactivation were voltage dependent [Boltzmann distributions with potential of half-maximal value (V(1/2)) = -24 mV and slope = -9 mV for activation; V(1/2) = -58 mV and slope = 13 mV for inactivation]. The time-dependent currents were resistant to 4-aminopyridine and to DIDS but blocked by nifedipine at high concentrations (IC(50) = 2 microM) as well as by verapamil and diltiazem. They could be increased by BAY K-8644 or by isoproterenol. We conclude that the I(to)-like currents are due to monovalent cation flow through L-type Ca(2+) channels, which in pig myocytes show low sensitivity to nifedipine.  相似文献   

11.
External divalent cations are known to play an important role in the function of voltage-gated ion channels. The purpose of this study was to examine the sensitivity of the voltage-gated K(+) currents of human atrial myocytes to external Ca(2+) ions. Myocytes were isolated by collagenase digestion of atrial appendages taken from patients undergoing coronary artery-bypass surgery. Currents were recorded from single isolated myocytes at 37 degrees C using the whole-cell patch-clamp technique. With 0.5 mM external Ca(2+), voltage pulses positive to -20 mV (holding potential = -60 mV) activated outward currents which very rapidly reached a peak (I(peak)) and subsequently inactivated (tau = 7.5 +/- 0.7 msec at +60 mV) to a sustained level, demonstrating the contribution of both rapidly inactivating transient (I(to1)) and non-inactivating sustained (I(so)) outward currents. The I(to1) component of I(peak), but not I(so), showed voltage-dependent inactivation using 100 msec prepulses (V(1/2) = -35.2 +/- 0.5 mV). The K(+) channel blocker, 4-aminopyridine (4-AP, 2 mM), inhibited I(to1) by approximately 76% and reduced I(so) by approximately 33%. Removal of external Ca(2+) had several effects: (i) I(peak) was reduced in a manner consistent with an approximately 13 mV shift to negative voltages in the voltage-dependent inactivation of I(to1). (ii) I(so) was increased over the entire voltage range and this was associated with an increase in a non-inactivating 4-AP-sensitive current. (iii) In 79% cells (11/14), a slowly inactivating component was revealed such that the time-dependent inactivation was described by a double exponential time course (tau(1) = 7.0 +/- 0.7, tau(2) = 90 +/- 21 msec at +60 mV) with no effect on the fast time constant. Removal of external Ca(2+) was associated with an additional component to the voltage-dependent inactivation of I(peak) and I(so) (V(1/2) = -20.5 +/- 1.5 mV). The slowly inactivating component was seen only in the absence of external Ca(2+) ions and was insensitive to 4-AP (2 mM). Experiments with Cs(+)-rich pipette solutions suggested that the Ca(2+)-sensitive currents were carried predominantly by K(+) ions. External Ca(2+) ions are important to voltage-gated K(+) channel function in human atrial myocytes and removal of external Ca(2+) ions affects I(to1) and 4-AP-sensitive I(so) in distinct ways.  相似文献   

12.
Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward-rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slope conductance expected for a K+ current. The voltage dependence of the chord conductance exhibited a sigmoidal relationship, increasing at more negative membrane potentials. Increasing the extracellular K+ concentration increased the maximal level of conductance and caused a shift in the relationship that was directly proportional to the change in reversal potential. Activation of the current followed a monoexponential time course, and the time constant of activation exhibited a monoexponential dependence on membrane potential. Increasing the extracellular K+ concentration caused a shift of this relationship that was directly proportional to the change in reversal potential. Inactivation of inward current became evident at more negative potentials, resulting in a negative slope region of the steady state current-voltage relationship between -140 and -180 mV. Steady state inactivation exhibited a sigmoidal voltage dependence, and recovery from inactivation followed a monoexponential time course. Removing extracellular Na+ caused a decrease in the slope of the steady state current-voltage relationship at potentials negative to -140 mV, as well as a decrease of the conductance of inward current. It was concluded that this current was IK1, the inward-rectifying K+ current found in multicellular cardiac preparations. The K+ and voltage sensitivity of IK1 activation resembled that found for the inward-rectifying K+ currents in frog skeletal muscle and various egg cell preparations. Inactivation of IK1 in isolated ventricular myocytes was viewed as being the result of two processes: the first involves a voltage-dependent change in conductance; the second involves depletion of K+ from extracellular spaces. The voltage-dependent component of inactivation was associated with the presence of extracellular Na+.  相似文献   

13.
Nonlinear or asymmetric charge movement was recorded from single ventricular myocytes cultured from 17-d-old embryonic chick hearts using the whole-cell patch clamp method. The myocytes were exposed to the appropriate intracellular and extracellular solutions designed to block Na+, Ca2+, and K+ ionic currents. The linear components of the capacity and leakage currents during test voltage steps were eliminated by adding summed, hyperpolarizing control step currents. Upon depolarization from negative holding potentials the nonlinear charge movement was composed of two distinct and separable kinetic components. An early rapidly decaying component (decay time constant range: 0.12-0.50 ms) was significant at test potentials positive to -70 mV and displayed saturation above 0 mV (midpoint -35 mV; apparent valence 1.6 e-). The early ON charge was partially immobilized during brief (5 ms) depolarizing test steps and was more completely immobilized by the application of less negative holding potentials. A second slower-decaying component (decay time constant range: 0.88-3.7 ms) was activated at test potentials positive to -60 mV and showed saturation above +20 mV (midpoint -13 mV, apparent valence 1.9 e-). The second component of charge movement was immobilized by long duration (5 s) holding potentials, applied over a more positive voltage range than those that reduced the early component. The voltage dependencies for activation and inactivation of the Na+ and Ca2+ ionic currents were determined for myocytes in which these currents were not blocked. There was a positive correlation between the voltage dependence of activation and inactivation of the Na+ and Ca2+ ionic currents and the activation and immobilization of the fast and slow components of charge movement. These complementary kinetic and steady-state properties lead to the conclusion that the two components of charge movement are associated with the voltage-sensitive conformational changes that precede Na+ and Ca2+ channel openings.  相似文献   

14.
The electrophysiological properties of HK2 (Kv1.5), a K+ channel cloned from human ventricle, were investigated after stable expression in a mouse Ltk- cell line. Cell lines that expressed HK2 mRNA displayed a current with delayed rectifier properties at 23 degrees C, while sham transfected cell lines showed neither specific HK2 mRNA hybridization nor voltage-activated currents under whole cell conditions. The expression of the HK2 current has been stable for over two years. The dependence of the reversal potential of this current on the external K+ concentration (55 mV/decade) confirmed K+ selectivity, and the tail envelope test was satisfied, indicating expression of a single population of K+ channels. The activation time course was fast and sigmoidal (time constants declined from 10 ms to < 2 ms between 0 and +60 mV). The midpoint and slope factor of the activation curve were Eh = -14 +/- 5 mV and k = 5.9 +/- 0.9 (n = 31), respectively. Slow partial inactivation was observed especially at large depolarizations (20 +/- 2% after 250 ms at +60 mV, n = 32), and was incomplete in 5 s (69 +/- 3%, n = 14). This slow inactivation appeared to be a genuine gating process and not due to K+ accumulation, because it was present regardless of the size of the current and was observed even with 140 mM external K+ concentration. Slow inactivation had a biexponential time course with largely voltage-independent time constants of approximately 240 and 2,700 ms between -10 and +60 mV. The voltage dependence of slow inactivation overlapped with that of activation: Eh = -25 +/- 4 mV and k = 3.7 +/- 0.7 (n = 14). The fully activated current-voltage relationship displayed outward rectification in 4 mM external K+ concentration, but was more linear at higher external K+ concentrations, changes that could be explained in part on the basis of constant field (Goldman-Hodgkin-Katz) rectification. Activation and inactivation kinetics displayed a marked temperature dependence, resulting in faster activation and enhanced inactivation at higher temperature. The current was sensitive to low concentrations of 4- aminopyridine, but relatively insensitive to external TEA and to high concentrations of dendrotoxin. The expressed current did not resemble either the rapid or the slow components of delayed rectification described in guinea pig myocytes. However, this channel has many similarities to the rapidly activating delayed rectifying currents described in adult rat atrial and neonatal canine epicardial myocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

16.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

17.
Using a voltage-clamp whole-cell technique, we studied transmembrane currents in hippocampal neurons after their long-lasting cultivation. Based on the activational characteristics and data on pharmacological sensitivity, we isolated and described an A-type voltage-activated fast inactivating potassium current (FIPC). This transient FIPC was activated at −50… −40 mV and was rather sensitive to 4-aminopyridine (4-AP). Extracellular application of 5 mM 4-AP decreased the FIPC amplitude by 75%, while application of 10 mM tetraethylammonium evoked no significant changes in it. Kinetics of FIPC activation could be described by one exponent in the fourth degree. With variations of the membrane potential from −40 to 30 mV, the activation time constant varied from 2.8 to 1.5 msec. Inactivation kinetics was described by one exponent with the time constant varying from 37 msec at −45 mV to 18 msec at 40 mV. Stationary activation and inactivation curves could be described by Boltzmann's equation; a half value of the level of stationary inactivation was reached at −80 mV, while stationary activation was attained at −25 mV. Kinetics of deinactivation (from stationary inactivation) was monoexponential with the time constant of 41 msec. It is supposed that FIPC through the membrane of hippocampal neurons is provided by the type Kv4.2 potassium channels.  相似文献   

18.
We have determined the time course of Na channel inactivation in clonal pituitary (GH3) cells by comparing records before and after the enzymatic removal of inactivation. The cells were subjected to whole-cell patch clamp, with papain included in the internal medium. Inactivation was slowly removed over the course of 10 min, making it possible to obtain control records before the enzyme acted. Papain caused a large (4-100x) increase in current magnitude for small depolarizations (near -40 mV), and a much smaller increase for large ones (approximately 1.5x at +40 mV). For technical reasons it was sometimes convenient to study outward INa recorded with no Na+ outside. The instantaneous I-V (IIV) curve in this condition was nonlinear before papain, and more nearly linear afterwards. The gNa-V curve after papain, obtained by dividing the INa-V curve by the IIV curve, was left-shifted by at least 20 mV and steepened. A spontaneous 5-10 mV left shift occurred in the absence of papain. The rate of the inactivation step was found to vary only slightly from -100 mV to +60 mV, based on the following evidence. (a) Before papain, inactivation rate saturated with voltage and was constant from +20 to +60 mV. (b) We activated the channels with a brief pulse, and studied the time course of the current on changing the voltage to a second, usually more negative level (Na+ present internally and externally). The time course of inactivation at each voltage was obtained by comparing control traces with those after inactivation was removed. When the 5-10-mV spontaneous shift was taken into account, inactivation rate changed by less than 10% from -100 to +60 mV. The data are considered in terms of existing models of the Na channel.  相似文献   

19.
We used the patch-clamp technique to identify and characterize the electrophysiological, biophysical, and pharmacological properties of K+ channels in enzymatically dissociated ventricular cells of the land pulmonate snail Helix. The family of outward K+ currents started to activate at –30 mV and the activation was faster at more depolarized potentials (time constants: at 0 mV 17.4 ± 1.2 ms vs. 2.5 ± 0.1 ms at + 60 mV). The current waveforms were similar to those of the A-type family of voltage-dependent K+ currents encoded by Kv4.2 in mammals. Inactivation of the current was relatively fast, i.e., 50.2 ± 1.8% of current was inactivated within 250 ms at + 40 mV. The recovery of K+ channels from inactivation was relatively slow with a mean time constant of 1.7 ± 0.2 s. Closer examination of steady-state inactivation kinetics revealed that the voltage dependency of inactivation was U-shaped, exhibiting less inactivation at more depolarized membrane potentials. On the basis of this phenomenon, we suggest that a channel encoded by Kv2.1 similar to that in mammals does exist in land pulmonates of the Helix genus. Outward currents were sensitive to 4-aminopyridine and tetraethylammonium chloride. The last compound was most effective, with an IC50 of 336 ± 142 µmol l–1. Thus, using distinct pharmacological and biophysical tools we identified different types of voltage-gated K+ channels. Present address for S.A.K.: Brigham and Womens Hospital, Cardiovascular Division, Harvard Medical School, 75 Francis St., Thorn 1216, Boston, MA 02115.  相似文献   

20.
Voltage-gated potassium channels in brown fat cells   总被引:6,自引:4,他引:2       下载免费PDF全文
We studied the membrane currents of isolated cultured brown fat cells from neonatal rats using whole-cell and single-channel voltage-clamp recording. All brown fat cells that were recorded from had voltage-gated K currents as their predominant membrane current. No inward currents were seen in these experiments. The K currents of brown fat cells resemble the delayed rectifier currents of nerve and muscle cells. The channels were highly selective for K+, showing a 58-mV change in reversal potential for a 10-fold change in the external [K+]. Their selectivity was typical for K channels, with relative permeabilities of K+ greater than Rb+ greater than NH+4 much greater than Cs+, Na+. The K currents in brown adipocytes activated with a sigmoidal delay after depolarizations to membrane potentials positive to -50 mV. Activation was half maximal at a potential of -28 mV and did not require the presence of significant concentrations of internal calcium. Maximal voltage-activated K conductance averaged 20 nS in high external K+ solutions. The K currents inactivated slowly with sustained depolarization with time constants for the inactivation process on the order of hundreds of milliseconds to tens of seconds. The K channels had an average single-channel conductance of 9 pS and a channel density of approximately 1,000 channels/cell. The K current was blocked by tetraethylammonium or 4-aminopyridine with half maximal block occurring at concentrations of 1-2 mM for either blocker. K currents were unaffected by two blockers of Ca2+-activated K channels, charybdotoxin and apamin. Bath-applied norepinephrine did not affect the K currents or other membrane currents under our experimental conditions. These properties of the K channels indicate that they could produce an increase in the K+ permeability of the brown fat cell membrane during the depolarization that accompanies norepinephrine-stimulated thermogenesis, but that they do not contribute directly to the norepinephrine-induced depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号