首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

2.
This report examines a group of putative nongenotoxic carcinogens that have been cited in the published literature. Using short-term test data from the U.S. Environmental Protection Agency/International Agency for Research on Cancer genetic activity profile (EPA/IARC GAP) database we have classified these agents on the basis of their mutagenicity emphasizing three genetic endpoints: gene mutation, chromosomal aberration and aneuploidy. On the basis of results of short-term tests for these effects, we have defined criteria for evidence of mutagenicity (and nonmutagenicity) and have applied these criteria in classifying the group of putative nongenotoxic carcinogens. The results from this evaluation based on the EPA/IARC GAP database are presented along with a summary of the short-term test data for each chemical and the relevant carcinogenicity results from the NTP, Gene-Tox and IARC databases. The data clearly demonstrate that many of the putative nongenotoxic carcinogens that have been adequately tested in short-term bioassays induce gene or chromosomal mutations or aneuploidy.  相似文献   

3.
C Ramel 《Mutation research》1986,168(3):327-342
The deployment of short-term assays for the detection of carcinogens inevitably has to be based on the genetic alterations actually involved in carcinogenesis. This paper gives an overview of oncogene activation and other mutagenic events connected with cancer induction. It is emphasized that there are indications of DNA alterations in carcinogenicity, which are not in accordance with "conventional" mutations and mutation frequencies, as measured by short-term assays of point mutations, chromosome aberrations and numerical chromosome changes. This discrepancy between DNA alterations in carcinogenicity and the endpoints of short-term assays in current use include transpositions, insertion mutations, polygene mutations, gene amplifications and DNA methylations. Furthermore, tumourigenicity may imply an induction of a genetic instability, followed by a cascade of genetic alterations. The evaluation of short-term assays for carcinogenesis mostly involves two correlations that is, between mutation and animal cancer data on the one hand and between animal cancer data and human carcinogenicity on the other. It should be stressed that animal bioassays for cancer in general imply tests specifically for the property of chemicals to function as complete carcinogens, which may be a rather poor reflection of the actual situation in human populations. The primary aim of short-term mutagenicity assays is to provide evidence as to whether a compound can be expected to cause mutations in humans, and such evidence has to be considered seriously even against a background of negative cancer data. For the evaluation of data from short-term assays the massive amount of empirical data from different assays should be used and new computer systems in that direction can be expected to provide improved predictions of carcinogenicity.  相似文献   

4.
312 chemicals/mixtures were tested for genotoxicity in the rat hepatocyte/DNA-repair test. A variety of structure-activity relationships was evident. Of the 309 pure chemicals, 142 were positive. Of these, 43 were judged by IARC to have sufficient or limited evidence of carcinogenicity and none of the remainder was a proven noncarcinogen. Among the 167 negative chemicals, 44 were carcinogens. Some of these are known to be genotoxic in other systems, but based on several lines of evidence, many are considered to be epigenetic carcinogens that lack the ability to react with DNA and rather lead to neoplasia by nongenotoxic mechanisms.  相似文献   

5.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

6.
The literature on the mouse sperm morphology test and on other sperm tests in nonhuman mammals was reviewed (a) to evaluate the relationship of these tests to chemically induced spermatogenic dysfunction, germ-cell mutagenicity, and carcinogenicity, and (b) to make an interspecies comparison to chemicals. A total of 71 papers were reviewed. The mouse sperm morphology test was used to assess the effects of 154 of the 182 chemical agents covered. 4 other murine sperm tests were also used: the induction of acrosomal abnormalities (4 agents), reduction in sperm counts, (6 agents), motility (5 agents), and F1 sperm morphology (7 agents)). In addition, sperm tests for the spermatogenic effects of 35 agents were done in 9 nonmurine mammalian species; these included analyses for sperm count, motility, and morphology, using a large variety of study designs. For the mouse sperm morphology test, 41 agents were judged by the reviewing committee to be positive inducers of sperm-head shape abnormalities, 103 were negative, and 10 were inconclusive. To evaluate the relationship between changes in sperm morphology and germ cell mutagenicity, the effects of 41 agents on mouse sperm shape were compared to available data from 3 different mammalian germ-cell mutational tests (specific locus, heritable translocation, and dominant lethal). The mouse sperm morphology test was found to be highly sensitive to germ-cell mutagens; 100% of the known mutagens were correctly identified as positives in the sperm morphology test. Data are insufficient at present to access the rate of false positives. Although it is biologically unclear why one might expect changes in sperm morphology to be related to carcinogenesis, we found that (a) a positive response in the mouse sperm morphology test is highly specific for carcinogenic potential (100% for the agents surveyed), and (b) overall, only 50% of carcinogens were positive in the test (i.e., sensitivity approximately equal to 50%). Since many carcinogens do not produce abnormally shaped sperm even at lethal doses, negative findings with the sperm test cannot be used to classify agents as noncarcinogens. We conclude that the mouse sperm morphology test has potential use for identifying chemicals that induce spermatogenic dysfunction and perhaps heritable mutations. Insufficient numbers of chemicals agents have been studied by the other sperm tests to permit similar comparisons. A comparison of 25 chemicals tested with sperm counts, motility, and morphology in at least 2 species (including man, mouse and 9 other mammals) demonstrated good agreement in response among species. With further study, interspecies comparisons of chemically induced sperm changes may be useful for predicting and evaluating human effects.  相似文献   

7.
To determine whether genotoxic and non-genotoxic carcinogens contribute similarly to the cancer burden in humans, an analysis was performed on agents that were evaluated in Supplements 6 and 7 to the IARC Monographs for their carcinogenic effects in humans and animals and for the activity in short-term genotoxicity tests. The prevalence of genotoxic carcinogens on four groups of agents, consisting of established human carcinogens (group 1, n = 30), probable human carcinogens (group 2A, n = 37), possible human carcinogens (group 2B, n = 113) and on agents with limited evidence of carcinogenicity in animals (a subset of group 3, n = 149) was determined. A high prevalence in the order of 80 to 90% of genotoxic carcinogens was found in each of the groups 1, 2A and 2B, which were also shown to be multi-species/multi-tissues carcinogens. The distribution of carcinogenic potency in rodents did not reveal any specific characteristic of the human carcinogens in group 1 that would differentiate them from agents in groups 2A, 2B and 3. The results of this analysis indicate that (a) an agent with unknown carcinogenic potential showing sufficient evidence of activity in in vitro/in vivo genotoxicity assays (involving as endpoints DNA damage and chromosomal/mutational damage) may represent a hazard to humans; and b) an agent showing lack of activity in this spectrum of genotoxicity assays should undergo evaluation for carcinogenicity by rodent bioassay, in view of the present lack of validated short-term tests for non-genotoxic carcinogens. Overall, this analysis implies that genotoxic carcinogens add more to the cancer burden in man than non-genotoxic carcinogens. Thus, identification of such genotoxic carcinogens and subsequent lowering of exposure will remain the main goal for primary cancer prevention in man.  相似文献   

8.
For a number of years, investigators have recognized that humans potentially are exposed to large numbers of genotoxicants. Many efforts have attempted to validate various short-term bioassays for use as rapid, inexpensive screens for genotoxicants--especially carcinogens. In this analysis, we examine Salmonella mutagenicity as an indicator of potential carcinogenicity by comparing published (and when possible, evaluated) Salmonella results with the evaluated Gene-Tox animal carcinogen data base. The Salmonella bioassay does especially well in those cases where the level of evidence for carcinogenicity is the strongest. Analysis shows that except for specific classes of compounds, the plate-incorporation protocol and the preincubation protocol are equally efficient at detecting mutagens. This paper also demonstrates how validation values (sensitivity, specificity, etc.) vary with chemical class. Overall, this analysis demonstrates that when used and interpreted in a meaningful chemical class context, the Salmonella bioassay remains extremely useful in identifying potential animal carcinogens.  相似文献   

9.
This paper introduces a new parameter, derivable from dose-response data for induced mutagenesis in bacteria, that can be used to quantify mutational responses in short-term tests. We called this parameter the mutational response of the bipartite experimental system (agent plus cells). We define it as being jointly proportional to the efficiency of the mutagen and the sensitivity of the test. We show how this quantity can be used to rank order chemical carcinogens on the basis of their mutagenicity and to determine the strength of any quantitative correlation that may exist between mutagenicity in bacteria and carcinogenicity in rodents. We find that this particular measure of mutational response for 10 direct-acting monofunctional alkylating agents correlates remarkably well with the rodent carcinogenicity of these chemicals measured in terms of their reciprocal TD50 values.  相似文献   

10.
Many inhibitors of topoisomerase II enzymes are potent mutagens, leading to major chromosomal deletions, illegitimate recombination and aneuploidy. There is increasing evidence that they are also human carcinogens. However, their lack of chemical reactivity means that they may give weak or negative results in commonly used mutagenicity tests, or may give data with characteristics quite distinct from chemicals that alkylate DNA. They do not form DNA adducts and assays such as 32P-postlabelling will not detect their presence in the body. They are generally not point mutagens and may fail to provide distinctive fingerprints in mutation spectra. These characteristics may be limiting a realistic evaluation of their role in human carcinogenesis using current methodologies.  相似文献   

11.
A simple substructure-based approach was developed to determine whether a short-term assay under development is related mechanistically to the endpoint it seeks to predict. Thus, substructures associated with mutagenicity in Salmonella are also present in carcinogens and agents active in other mutagenicity and genotoxicity assays.When applied to test results obtained with an Escherichia coli strain designed to identify oxidative mutagens, there was no significant association with either carcinogens or mutagens and genotoxicants detected by other systems. There was, however, a significant association between alerts for oxidative mutagenesis and chemicals capable of inducing allergic contact dermatitis (ACD) in humans.  相似文献   

12.
A survey has been conducted of 222 chemicals evaluated for carcinogenicity in mice and rats by the United States NCI/NTP. The structure of each chemical has been assessed for potential electrophilic (DNA-reactive) sites, its mutagenicity to Salmonella recorded, and the level of its carcinogenicity to rodents tabulated. Correlations among these 3 parameters were then sought. A strong association exists among chemical structure (S/A), mutagenicity to Salmonella (Salm.) and the extent and sites of rodent tumorigenicity among the 222 compounds. Thus, a approximately 90% correlation exists between S/A and Salm. across the 115 carcinogens, the 24 equivocal carcinogens and the 83 non-carcinogens. This indicates the Salmonella assay to be a sensitive method of detecting intrinsic genotoxicity in a chemical. Concordance between S/A and Salm. have therefore been employed as an index of genotoxicity, and use of this index reveals two groups of carcinogens within the database, genotoxic and putatively non-genotoxic. These two broad groups are characterized by different overall carcinogenicity profiles. Thus, 16 tissues were subject to carcinogenesis only by genotoxins, chief among which were the stomach, Zymbal's glands, lung, subcutaneous tissue and circulatory system. Conclusions of carcinogenicity in these 16 tissues comprised 31% of the individual chemical/tissue reports of carcinogenicity. In contrast, both genotoxins and non-genotoxins were active in the remaining 13 tissues, chief among which was the mouse liver which accounted for 24% of all chemical/tissue reports of carcinogenicity. Further, the group of 70 carcinogens reported to be active in both species and/or in 2 or more tissues contained a higher proportion of Salmonella mutagens (70%) than observed for the group of 45 single-species/single-tissue carcinogens (39%). 30% of the 83 non-carcinogens were mutagenic to Salmonella. This confirms earlier observations that a significant proportion of in vitro genotoxins are non-carcinogenic, probably due to their non-absorption or preferential detoxification in vivo. Also, only 30% of the mouse liver-specific carcinogens were mutagenic to Salmonella. This is consistent with tumors being induced in this tissue (and to a lesser extent in other tissues of the mouse and rat) by mechanisms not dependent upon direct interaction of the test chemical with DNA. Detection of 103 of the 115 carcinogens could be achieved by use of only male rats and female mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The aim of the present study was to evaluate the usefulness of different pairs of DNA repair-deficient and DNA repair-proficient bacterial tester strains in a mutagenicity/carcinogenicity screen, possibly as complements to the Ames test. 70 carcinogenic and non-carcinogenic compounds, representing a variety of chemical structures, were tested for their DNA-damaging effects, using 6 different DNA-repair-deficient bacterial strains. 2 Bacillus subtilis systems, H17/M45 and HLL3g/HJ-15, were used. The susceptibility of Escherichia coli AB1157 was compared with the susceptibility of 4 recombination-deficient mutants, JC5547, JC2921, JC2926 and JC5519. The test compounds were applied onto paper disks (spot test, ST), or incorporated into a top agar layer (agar-incorporation test, AT). The 2 B. subtilis systems were generally found to be more sensitive and reliable than the assays using E coli. The incorporation of the test compounds in the agar increased the sensitivity of the test for polycyclic aromatic hydrocarbons and other poorly water-soluble compounds. Hydrazines and several other highly polar chemicals could be tested more efficiently when applied onto paper disks. About 30% of the test compounds did not induce any growth inhibition and so could not be tested properly. In order to evaluate the ability of these DNA-repair tests to complement the Ames Salmonella mutagenicity test in a genetic toxicology screening program, results from this study were compared with published data both on mutagenicity in the Ames test and on carcinogenicity. 8 carcinogens generally found to be non-mutagenic for Salmonella were tested: 2 showed DNA-damaging properties (mitomycin C, 1,2-dimethylhydrazine), 5 failed to do so (actinomycin D, griseofulvin, thioacetamide, diethylstilbestrol, safrole), and one (thiourea) was not toxic, so that no classification was possible. 2 non-carcinogenic bacterial mutagens were examined; one, sodium azide, was equitoxic for repair-proficient and -deficient strains, while the other, nitrofurantoin, primarily inhibited repair-deficient strains. The DNA-repair tests failed to indicate the mutagenic and carcinogenic properties of acridine orange. Nalidixic acid, a non-mutagenic DNA synthesis inhibitor, damaged bacterial DNA. Apart from the differences summarized above, carcinogenicity was indicated correctly by the Salmonella S9 assay and most sets of DNA-repair-deficient and DNA-repair-proficient tester strains evaluated in this study. Thus, several more carcinogens could be detected by performing the Ames test and the bacterial DNA-repair tests in tandem than by using either test alone. Nevertheless, the use of both bacterial in vitro systems in a battery of short-term tests for mutagenicity/carcinogenicity evaluation is not considered to be ideal, since the Ames test and the pairs of DNA-repair-deficient and DNA-repair-proficient tester strains used had several shortcomings in common under the conditions of this study.  相似文献   

14.
111 chemicals of known rodent carcinogenicity (49 carcinogens, 62 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, hepatocarcinogens, and halogenated hydrocarbons, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 111 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. Composite parameters are defined as follows: CP = [ODC and P450), CT = [ALT and ODC), and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 55%, specificity 87%, positive predictivity 77%, negative predictivity 71%, and concordance 73%. For these chemicals, the 73% concordance of this study was superior to the concordance obtained from published data from other laboratories on the Ames test (53%), structural alerts (SA) (46%), chromosome aberrations in Chinese hamster ovary cells (ABS) (48%), cell mutation in mouse lymphoma 15178Y cells (MOLY) (52%), and sister-chromatid exchange in Chinese hamster ovary cells (SCE) (60%). The 4 in vivo biochemical assays were complementary to each other. The composite parameter TS also shows complementarity to all 5 other predictors of rodent cancer examined in this paper. For example, the Ames test alone has a concordance of only 53%. In combination with TS, the concordance is increased to 62% (Ames or TS) or to 63% (Ames and TS). For the 67 chemicals with data available for SA, the concordance for predicting rodent carcinogenicity was 47% (for SA alone), 54% (for SA or TS), and 66% (for SA and TS). These biochemical assays will be useful: (1) to predict rodent carcinogenicity per se, (2) to 'confirm' the results of short-term mutagenicity tests by the high specificity mode of the biochemical assays (the specificity and positive predictivity are both 100%), and (3) to be a component of future complementary batteries of tests for predicting rodent carcinogenicity.  相似文献   

15.
The recent activity in designing, validating and implementing short-term tests for carcinogens has been spurred by the fairly convincing correlation between the carcinogenicity and mutagenicity of chemicals and by the assumption that mutations are somehow involved in neoplastic transformation. Moreover, it has been tacitly assumed that the mutagenic capacity alone of compounds would induce regulatory agencies to pass rules for their removal from man's environment, and would lead the public to avoid them. The actual response, however, is quite different. Government departments shy away from making any decisions on the basis of in vitro test systems, the public at large is becoming irritated by daily announcements that many of their cherished habits could adversely affect their health, and industries feel threatened and may reduce their search for new beneficial chemicals. The reluctance to accept wholeheartedly the mutagenicity tests for the detection of carcinogens is partly due to the uncertainty about the involvement of mutations in the formation of benign and malignant tumors. Following the initial rapid advances in the detection of environmental chemicals with carcinogenic and mutagenic properties, we seem to have arrived at the cross roads: we must now set new priorities for future research, and must make an unbiased assessment of the actual hazard of a compound to man and the human population.  相似文献   

16.
The CASE structure-activity relational method was used to predict the mutagenicity, cytogenotoxicity, carcinogenicity, sensory irritation, male rat-specific 2μ-nephrotoxicity and maximum tolerated dose of a population of molecules (N1300). These chemicals were then sorted out by their predicted responses to specific tests and sub-populations of molecules with different prevalence with respect to described endpoints were constructed, i.e. 0–100% prevalences of mutagens, rodent carcinogens and SCE inducers. The predited properties of these populations were analyzed and the ovelap among tests was determined. The false-positive and false-negative predictions.  相似文献   

17.
The removal of carconogenic factors would be a most efficient measure to prevent cancer. As far as known chemicals are concerned, every effort is made to avert them, or at least to reduce the exposure to such compounds, but is necessary to detect unknown chemicals, especially those, drugs and foodstuffs for example, to which large populations are exposed. Giving suspected chemicals to laboratory animals is a standard carcinogenicity test. Studies of the carcinogenicity of unknown chemicals in animals are time consuming, expensive and cumbersome. This is why other means of establishing carcinogenicity are sought for. Several rapid tests are available to-day to select suspected carcinogens. These methods aim primarily at determining with chemicals--at the cell or tissue level--certain changes that would appear essential to trigger the carcinogenic process, such as somatic mutations. Studies are used on the mutagenicity of chemicals for bacteria of the Salmonella type, for yeast and cultured mammalian cells, together with the induction of recessive lethal mutations in Drosophila and of the unscheduled repair synthesis of DNA and the transformation of mammalian cells in vitro. Although there is an unequivocal correlation between the activity of chemicals in such tests and their carcinogenicity, discrepancies are found. Thus, the in vivo tests on laboratory animals remain the most reliable method to determine carcinogenicity. Whereas direct extrapolation of experimental data to human pathology is impossible, the experimental evidence of the carcinogenicity of any chemical should allow us to draw constructive conclusions. We shall never be able to reject drugs which produce the expected results and cannot be replaced by other drugs. But we can must the drugs whose beneficial effects are not exceptional and which can be replaced by other chemicals. As for the chemicals used in food additives and cosmetics, and recognized as carcinogenic in animals, they should be totally given up. Any decision made should be based on animal studies.  相似文献   

18.
Aromatic amines represent one of the most important classes of industrial and environmental chemicals: many of them have been reported to be powerful carcinogens and mutagens, and/or hemotoxicants. Their toxicity has been studied also with quantitative structure-activity relationship (QSAR) methods: these studies are potentially suitable for investigating mechanisms of action and for estimating the toxicity of compounds lacking experimental determinations. In this paper, we first summarized the QSAR models for the rodent carcinogenicity of the aromatic amines. The gradation of potency of the carcinogenic amines depended firstly on their hydrophobicity, and secondly on electronic (reactivity, propensity to be metabolically transformed) and steric properties. On the contrary, the difference between carcinogenic and non-carcinogenic aromatic amines depended mainly on electronic and steric properties. These QSARs can be used directly for estimating the carcinogenicity of aromatic amines. A two-step prediction is possible: (1) estimation of yes/no activity; (2) if the answer from step 1 is yes, then prediction of the degree of potency. The QSARs for rodent carcinogenicity were put in a wider context by comparing them with those for: (a) Salmonella mutagenicity; (b) general toxicity; (c) enzymatic reactions; (d) physical-chemical reactions. This comparative QSAR exercise generated a coherent global picture of the action mechanisms of the aromatic amines. The QSARs for carcinogenicity were similar to those for Salmonella mutagenicity, thus pointing to a similar mechanism of action. On the contrary, the general toxicity QSARs (both in vitro and in vivo systems) were mostly based on hydrophobicity, pointing to an aspecific mechanism of action much simpler than that for carcinogenicity and mutagenicity. The oxidation of the amines (first step in the main metabolic pathway leading to carcinogenic and mutagenic species) had identical QSARs in both enzymatic and physical-chemical systems, thus providing evidence for the link between simple chemical reactions and those in biological systems. The results show that it is possible to generate mechanistically and statistically sound QSAR models for rodent carcinogenicity, and indirectly that the rodent bioassay is a reliable source of good quality data.  相似文献   

19.
The published results on 60 chemicals and X-rays investigated in the mouse spot test were compared with data on the same chemicals tested in the bacterial mutation assay (Ames test) and lifetime rodent bioassays. The performance of the spot test as an in vivo complementary assay to the in vitro bacterial mutagenesis test reveals that of 60 agents, 38 were positive in both systems, 6 were positive only in the spot test, 10 were positive only in the bacterial test and 6 were negative in both assays. The spot test was also considered as a predictor of carcinogenesis; 45 chemicals were carcinogenic of which 35 were detected as positive by the spot test and 3 out of 6 non-carcinogens were correctly identified as negative. If the results are regarded in sequence, i.e. that a positive result in a bacterial mutagenicity test reveals potential that may or may not be realized in vivo, then 48 chemicals were mutagenic in the bacterial mutation assay of which 38 were active in the spot test and 31 were confirmed as carcinogens in bioassays. 12 chemicals were non-mutagenic to bacteria of which 6 gave positive responses in the spot test and 5 were confirmed as carcinogens. These results provide strong evidence that the mouse coat spot test is an effective complementary test to the bacterial mutagenesis assay for the detection of genotoxic chemicals and as a confirmatory test for the identification of carcinogens. The main deficiency at present is the paucity of data from the testing of non-carcinogens. With further development and improvement of the test it is probable that the predictive performance of the assay in identifying carcinogens should improve, since many of the false negative responses may be due to inadequate testing.  相似文献   

20.
This paper is an extension and update of an earlier review published in this journal (Ashby and Tennant, 1988). A summary of the rodent carcinogenicity bioassay data on a further 42 chemicals tested by the U.S. National Toxicology Program (NTP) is presented. An evaluation of each chemical for structural alerts to DNA-reactivity is also provided, together with a summary of its mutagenicity to Salmonella. The 42 chemicals were numbered and evaluated as an extension of the earlier analysis of 222 NTP chemicals. The activity patterns and conclusions derived from the earlier study remain unchanged for the larger group of 264 chemicals. Based on the extended database of 264 NTP chemicals, the sensitivity of the Salmonella assay for rodent carcinogens is 58% and the specificity for the non-carcinogens is 73%. A total of 32 chemicals were defined as equivocal for carcinogenicity and, of these, 11 (34%) are mutagenic to Salmonella. An evaluation is made of instances where predictions of carcinogenicity, based on structural alerts, disagree with the Salmonella mutagenicity result (12% of the database). The majority of the disagreements are for structural alerts on non-mutagens, and that places these alerts as a sensitive primary screen with a specificity lower than that of the Salmonella assay. That analysis indicates some need for assays complementary to the Salmonella test when screening for potential genotoxic carcinogens. It also reveals that the correlation between structural alerts and mutagenicity to Salmonella is probably greater than 90%. Chemicals predicted to show Michael-type alkylating activity (i.e., CH2 = CHX; where X = an electron-withdrawing group, e.g. acrylamide) have been confirmed as a structural alert, and the halomethanes (624 are possible) have been classified as structurally-alerting. To this end an extended carcinogen-alert model structure is presented. Among the 138 NTP carcinogens now reviewed, 45 (33%) are non-mutagenic to Salmonella and possess a chemical structure that does not alert to DNA-reactivity. These carcinogens therefore either illustrate the need for complementary genetic screening tests to the Salmonella assay, or they represent the group of non-genotoxic carcinogens referred to most specifically by Weisburger and Williams (1981); the latter concept is favoured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号