首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many biotrophic fungal plant pathogens develop feeding structures, haustoria, inside living plant cells, which are essential for their success. Extrahaustorial membranes (EHMs) surround haustoria and delimit the extrahaustorial matrices (EHMxs). Little is known about transport mechanisms across EHMs and what properties proteins and nutrients need in order to cross these membranes. To investigate this further, we expressed fluorescent proteins in the cytosol of infected barley leaf epidermal cells after particle bombardment and investigated properties that influenced their localisation in the powdery mildew EHMx. We showed that this translocation is favoured by a neutral isoelectric point (pI) between 6.0 and 8.4. However, for proteins larger than 50 kDa, pI alone does not explain their localisation, hinting towards a more complex interplay between pI, size, and sequence properties. We discuss the possibility that an EHM translocon is involved in protein uptake into the EHMx.  相似文献   

2.
The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.  相似文献   

3.
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.  相似文献   

4.
Summary Monokaryotic haustoria (M-haustoria) ofUromyces vignae inVigna sinensis cells are surrounded by an extrahaustorial matrix (ema) and the invaginated host plasmalemma, the extrahaustorial membrane (ehrn). The ema was characterized with antibodies against components of the plant cell wall; the ema contained hydroxyproline-rich glycoproteins and arabinogalactans/arabinogalactan proteins, both at a higher concentration close to the ehm. Haustoria with large vacuoles had the ema encased by additional layers. An electron-translucent inner layer deposited on top of the ema contained arabinogalactans/arabinogalactan proteins, hydroxyproline-rich glycoproteins, and callose. The inner layer was surrounded by an electron-translucent middle layer with numerous dark inclusions, rich in pectin and fucose bound to xyloglucans. Finally, a more electron-dense outer layer containing arabinogalactans/arabinogalactan proteins and hydroxyproline-rich glycoproteins encased the whole structure. These polysaccharides, with the exception of callose and un-esterified pectin, were also found in the plant Golgi apparatus. The polysaccharides were synthesized in the trans Golgi cisternae and secreted into the host-parasite interface. The secretory events seem to be coupled to endocytosis since numerous coated pits were found on the ehm too. The pits were elongated, sometimes formed tubules and the coat reacted with an antibody against plant clathrin. Our results suggest intensive membrane recycling around haustoria, together with the secretion of cell wall material, which in the case of more or less vacuolated haustoria seems to be responsible for encasementAbbreviations AG/AGP arabinogalactans and arabinogalactan proteins - BSA bovine serum albumin - ehm extrahaustorial membrane - ema extrahaustorial matrix - HRGP2b hydroxyproline rich glycoproteins - M-haustorium monokaryotic haustorium - TBS tris buffered saline  相似文献   

5.
植物专性寄生菌吸器功能研究现状北大核心CSCD   总被引:2,自引:0,他引:2  
吸器是专性寄生真菌和卵菌的菌丝产生的一种短小分支变态结构,由吸器体、吸器外间质和吸器外质膜3部分组成。吸器不仅仅是吸收和转运寄主植物的营养物质的功能,它在病原菌生物合成、抑制寄主的防御反应等方面也具有不同程度的作用。对吸器的深入了解将有助于更好地认识、控制专性寄生菌。本文综述了吸器关于营养吸收与致病性方面的功能,讨论了有待解决的问题及今后的研究趋势。  相似文献   

6.
Powdery mildew fungal pathogens penetrate the plant cell wall and develop a feeding structure called the haustorium to steal photosynthetate from the host cell. Here, we report that the broad-spectrum mildew resistance protein RPW8.2 from Arabidopsis thaliana is induced and specifically targeted to the extrahaustorial membrane (EHM), an enigmatic interfacial membrane believed to be derived from the host cell plasma membrane. There, RPW8.2 activates a salicylic acid (SA) signaling-dependent defense strategy that concomitantly enhances the encasement of the haustorial complex and onsite accumulation of H2O2, presumably for constraining the haustorium while reducing oxidative damage to the host cell. Targeting of RPW8.2 to the EHM, however, is SA independent and requires function of the actin cytoskeleton. Natural mutations that impair either defense activation or EHM targeting of RPW8.2 compromise the efficacy of RPW8.2-mediated resistance. Thus, the interception of haustoria is key for RPW8-mediated broad-spectrum mildew resistance.  相似文献   

7.
Plants employ multiple cell‐autonomous defense mechanisms to impede pathogenesis of microbial intruders. Previously we identified an exocytosis defense mechanism in Arabidopsis against pathogenic powdery mildew fungi. This pre‐invasive defense mechanism depends on the formation of ternary protein complexes consisting of the plasma membrane‐localized PEN1 syntaxin, the adaptor protein SNAP33 and closely sequence‐related vesicle‐resident VAMP721 or VAMP722 proteins. The Arabidopsis thaliana resistance to powdery mildew 8.2 protein (RPW8.2) confers disease resistance against powdery mildews upon fungal entry into host cells and is specifically targeted to the extrahaustorial membrane (EHM), which envelops the haustorial complex of the fungus. However, the secretory machinery involved in trafficking RPW8.2 to the EHM is unknown. Here we report that RPW8.2 is transiently located on VAMP721/722 vesicles, and later incorporated into the EHM of mature haustoria. Resistance activity of RPW8.2 against the powdery mildew Golovinomyces orontii is greatly diminished in the absence of VAMP721 but only slightly so in the absence of VAMP722. Consistent with this result, trafficking of RPW8.2 to the EHM is delayed in the absence of VAMP721. These findings implicate VAMP721/722 vesicles as key components of the secretory machinery for carrying RPW8.2 to the plant–fungal interface. Quantitative fluorescence recovery after photobleaching suggests that vesicle‐mediated trafficking of RPW8.2–yellow fluorescent protein (YFP) to the EHM occurs transiently during early haustorial development and that lateral diffusion of RPW8.2–YFP within the EHM exceeds vesicle‐mediated replenishment of RPW8.2–YFP in mature haustoria. Our findings imply the engagement of VAMP721/722 in a bifurcated trafficking pathway for pre‐invasive defense at the cell periphery and post‐invasive defense at the EHM.  相似文献   

8.
9.
M. Hahn  K. Mendgen 《Protoplasma》1992,170(3-4):95-103
Summary Rust haustoria isolated from infected leaf tissue strongly bind to ConA. This property was exploited to purify them by affinity chromatography on a ConA-Sepharose macrobead column. Haustoria were obtained with more than 90% purity and yields of up to 50%. Binding of haustoria to the column was partially inhibited by a ConA-specific sugar, methyl -D-mannopyranoside. Compared to ConA,Lens culinaris agglutinin and wheat germ agglutinin were less efficient affinity ligands. Using ConA-Sepharose, rust haustoria from a variety of sources could be isolated with equal efficiency, indicating that they have similar carbohydrate surface properties. The haustoria maintained their typical shape after the isolation procedure, which suggests a rather rigid wall structure. The morphology of haustoria was characteristic both for a given species and the nuclear condition of the rust mycelium. Electron microscopy of isolated haustoria revealed an intact haustorial wall surrounded by a fibrillar layer presumably derived from the extrahaustorial matrix. The matrix thus appears to represent a layer with gel-like properties which is rich in ConA-binding carbohydrates and connected to the haustorial wall but not to the host-derived extrahaustorial membrane.Abbreviations ConA Concanavalin A - LCA Lens culinaris agglutinin - WGA wheat germ agglutinin - FITC fluorescein isothiocyanate - DAPI 4,6-diamidinophenylindol×2 HCl  相似文献   

10.
Biotrophic plant pathogenic fungi are one of the major causes of crop losses. The infection processes they exhibit are typified by infected host plant cells remaining alive for several days. This requires the development of specialized infection structures such as haustoria which are produced by obligate biotrophs, and intracellular hyphae which are produced by many hemibiotrophs. These infection hyphae are surrounded by the host plant plasma membrane, and in the case of haustoria the extrahaustorial membrane differs biochemically and structurally from the normal membrane. An interfacial matrix separates haustoria and intracellular hyphae from the invaginated membrane and this seems to be characteristic of biotrophic interactions. There is clear evidence for molecular differentiation of the haustorial plasma membrane in powdery mildews and rusts in comparison with the other fungal membranes. Relatively few pathogenicity genes related to biotrophy, and the switch from biotrophy to necrotrophy in hemibiotrophs, have been identified.  相似文献   

11.
抗病品种中小麦条锈菌细胞的超微结构变化过程   总被引:4,自引:1,他引:3  
本文就寄主抗病性表达过程中,小麦条锈菌细胞的超微结构变化进行了系统地观察研究。结果表明:胞间菌丝的细胞壁染色逐渐加深,厚度加宽,结构疏松,形成小空洞,并逐渐解体;细胞质逐渐凝聚、脂肪粒的数量增多、有黑色颗粒状沉积物积累;细胞质中小囊泡数目增多并逐渐融合成大液泡,线粒体数目增多,并逐渐肿胀和解体。次生吸器畸形,初生吸器体呈圆球形。吸器壁加厚,染色加深;在吸器的中央,细胞质逐渐分解而形成空泡;线粒体数目增多,并逐渐肿胀和解体;吸器外质膜呈皱褶状,吸器外间质加宽,其中有大量的丝状或颗粒状内含物形成;吸器形态结构的变化均早于其胞间菌丝。  相似文献   

12.
Haustoria of severalUrocystis spp. have been investigated by transmission electron microscopy. The haustoria are botryose and have an extrahaustorial matrix with vesiclelike bodies. The extrahaustorial membrane shows high ATPase activity in contrast to the haustorial plasmalemma. In walled off haustoria the haustorial plasmalemma stains more intensely than the extrahaustorial membrane. The vesicle-like bodies are ATPase negative. The role of the vesicle-like bodies is discussed.Dedicated to Prof. DrLothar Geitler on the occasion of the 90th anniversary of his birthday. Part 55 of a series Studies inHeterobasidiomycetes.  相似文献   

13.
Summary. Transmission electron microscopy was used to examine details of the host–pathogen interface in daylily leaf cells infected by the rust fungus Puccinia hemerocallidis. Samples were prepared for study by high-pressure freezing followed by freeze substitution. The outstanding preservation of ultrastructural details afforded by this fixation protocol greatly facilitated the study of this host–pathogen interface. The extrahaustorial membrane that separated each dikaryotic haustorium from the cytoplasm of its host cell was especially well preserved and appeared almost completely smooth in profile. Large aggregations of tubular cytoplasmic elements were present near haustoria in infected host cells. Many of these tubular elements were found to be continuous with the extrahaustorial membrane and conspicuous electron-dense deposits present in the extrahaustorial matrix extended into these elements. The use of gold-conjugated wheat germ agglutinin for labeling of chitin revealed that these deposits were not part of the haustorial wall. Portions of many of the tubular elements associated with haustoria were conspicuously beaded in appearance. Some tubular elements were found to be continuous with flattened cisternae that in turn bore short beaded chains. Distinctive tubular-vesicular complexes previously reported only in cryofixed rust haustoria also were found in the haustoria of P. hemerocallidis. Received July 6, 2001 Accepted October 3, 2001  相似文献   

14.
Subcellular events of Erysiphe cichoracearum infections of epidermal cells were visualized in living tissues of Arabidopsis plants carrying various green fluorescent protein (GFP)-tagged organelles via laser scanning confocal microscopy. Early in the infection sequence, cytoplasm and organelles moved towards penetration sites and accumulated near penetration pegs. Peroxisomes appeared to accumulate preferentially relative to the cytoplasm at penetration sites. Another early event, which preceded haustorium formation, was the aggregation of some GFP-tagged plasma membrane marker proteins into rings around penetration sites, which extended across cell-wall boundaries into neighboring cells. This feature localized to sites where papillae were deposited. The extrahaustorial membrane (EHM) encases the fungal feeding structure, the haustorium, separating it from the host cytoplasm. Eight plasma membrane markers were excluded from the EHM and remained in a collar-like formation around the haustorial neck. These observations support the suggestions that the EHM is a unique, specialized membrane and is different from the plasma membrane. Our results suggested two possibilities for the origin of the EHM: invagination of the plasma membrane coupled with membrane differentiation; or de novo synthesis of the EHM by targeted vesicle trafficking.  相似文献   

15.
Multivesicular bodies (MVBs) are ubiquitous endocytic organelles containing numerous 50-80 nm vesicles. MVBs are very dynamic in shape and function. In antigen presenting cells (APCs), MVBs play a central role in the loading of major histocompatibility complex class II (MHC II) with antigenic peptides. How MHC II is transported from MVBs to the cell surface is only partly understood. One way involves direct fusion of MVBs with the plasma membrane. As a consequence, their internal vesicles are secreted as so-called exosomes. An alternative has been illustrated in maturing dendritic cells (DCs). Here, MVBs are reshaped into long tubules by back fusion of the internal vesicles with the MVB limiting membrane. Vesicles derived from the tips of these tubules then carry MHC II to the cell surface.  相似文献   

16.
Localized cell wall modification and accumulation of antimicrobial compounds beneath sites of fungal attack are common mechanisms for plant resistance to fungal penetration. In barley (Hordeum vulgare) leaves, light-microscopically visible vesicle-like bodies (VLBs) containing H(2)O(2) or phenolics frequently accumulate around cell wall appositions (syn. papillae), in which the penetration attempt of the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) is halted. By ultrastructural analyses, we demonstrated that the Bgh-induced VLBs represent different structures. VLBs intensively stained by H(2)O(2)-reactive dyes were actually small papillae instead of cytoplasmic vesicles. Other VLBs were identified as osmiophilic bodies or multivesicular compartments, designated paramural bodies (PMBs) and multivesicular bodies (MVBs). MVBs seemingly followed two distinct pathways: either they were engulfed by the tonoplast for degradation in the vacuole or they fused with the plasma membrane to release their internal vesicles into the paramural space and hence could be the origin of PMBs. MVBs and PMBs appeared to be multicomponent kits possibly containing building blocks to be readily assembled into papilla and antimicrobial compounds to be discharged against fungal penetration. Finally, we propose that released paramural vesicles might be similar to exosomes in animal cells.  相似文献   

17.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   

18.
The formation of haustoria is one of the hallmarks of the interaction of obligate biotrophic fungi with their host plants. In addition to their role in nutrient uptake, it is hypothesized that haustoria are actively involved in establishing and maintaining the biotrophic relationship. We have identified a 24.3-kDa protein that exhibited a very unusual allocation. Rust transferred protein 1 from Uromyces fabae (Uf-RTP1p) was not only detected in the host parasite interface, the extrahaustorial matrix, but also inside infected plant cells by immunofluorescence and electron microscopy. Uf-RTP1p does not exhibit any similarity to sequences currently listed in the public databases. However, we identified a homolog of Uf-RTP1p in the related rust fungus Uromyces striatus (Us-RTP1p). The localization of Uf-RTP1p and Us-RTP1p inside infected plant cells was confirmed, using four independently raised polyclonal antibodies. Depending on the developmental stage of haustoria, Uf-RTP1p was found in increasing amounts in host cells, including the host nucleus. Putative nuclear localization signals (NLS) were found in the predicted RTP1p sequences. However, functional efficiency could only be verified for the Uf-RTP1p NLS by means of green fluorescent protein fusions in transformed tobacco protoplasts. Western blot analysis indicated that Uf-RTP1p and Us-RTP1p most likely enter the host cell as N-glycosylated proteins. However, the mechanism by which they cross the extrahaustorial membrane and accumulate in the host cytoplasm is unknown. The localization of RTP1p suggests that it might play an important role in the maintenance of the biotrophic interaction.  相似文献   

19.
Soylu S 《Mycopathologia》2004,158(4):457-464
In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsis thaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.  相似文献   

20.
本研究采用电镜技术研究了种衣剂17号对小麦条锈菌发育的影响。观察结果表明,该种衣剂引起病菌和寄主细胞内发生了一系列变化。病菌菌丝和吸器内脂肪粒和液泡明显增加;菌丝壁和吸器壁呈不规则加厚;菌丝分枝处无隔膜产生或隔膜畸形;有的吸器母细胞产生的畸形入侵栓,大都不能穿透寄主细胞壁,初生吸器外间质内沉积有染色较深的物质,次生吸器可产生多个不规则分枝,但不能扩张膨大;菌丝外渗的物质可能引起寄主细胞的坏死;大多数受侵寄主细胞可分泌形成较大的胼胝质,有时寄主细胞分泌的物质可将吸器体完全包围起来。上述结果表明,种衣剂17号不仅可直接作用于条锈菌,而且也可通过影响寄主而间接地影响病菌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号