首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term monitoring of the dates of arrival, breeding, and autumn migration in 25 passerine bird species on the Kurshskaya (Courland) Spit, the Baltic Sea, has shown that spring migration and nesting in most species wintering in Europe or Africa have shifted to earlier dates in the past two decades, whereas the dates of autumn migration in most species studied have not changed significantly. In 16 bird species, a significant negative correlation of the timing of arrival and breeding with the average spring air temperature and the North Atlantic Oscillation index (NAO) in February and March was revealed. In years with early and warm springs, birds arrived at the spit and nested considerably earlier than in years with cold springs. The dates of autumn migration in most species studied largely depended on the timing of nesting but not on weather conditions in autumn. The data obtained indicate that the main factor responsible for long-term changes in the timing of arrival, nesting, and autumn migrations of passerine birds in the Baltic Region is climate fluctuations that led to considerable changes in thermal conditions in the Northern Hemisphere in the 20th century. The hypothesis is proposed that recent climate warming has caused changes in the timing of not only the arrival of birds in Europe but also of their spring migrations from Africa. Further changes in the dates of passerine bird arrival and breeding in the Palearctic in subsequent years will largely depend on the dynamics of winter and spring air temperatures in the Northern Hemisphere, whereas the timing of autumn migrations will be determined mainly by the dates of their arrival and nesting.  相似文献   

2.
The phenology of spring migration depends on the severity of the preceding winter and approaching spring. This severity can be quantified using the North Atlantic Oscillation (NAO) index; positive values indicate mild winters. Although milder winters are correlated with earlier migration in many birds in temperate regions, few studies have addressed how climate‐induced variation in spring arrival relates to breeding success. In northern Europe, the NAO‐index correlates with ice cover and timing of ice break‐up of the Baltic Sea. Ice cover plays an important role for breeding waterfowl, since the timing of ice break‐up constrains both spring arrival and onset of breeding. We studied the effects of the winter‐NAO‐index and timing of ice break‐up on spring migration, laying date, clutch size, female body condition at hatching and fledging success of a short‐distance migrant common eider (Somateria mollissima) population from SW Finland, the Baltic Sea, 1991–2004 (migration data 1979–2004). We also examined the correlation between the NAO‐index and the proportion of juvenile eiders in the Danish hunting bag, which reflects the breeding success on a larger spatial scale. The body condition of breeding females and proportion of juveniles in the hunting bag showed significant positive correlations with the NAO, whereas arrival dates showed positive correlations and clutch size and fledging success showed negative correlations with the timing of ice break‐up. The results suggest that climate, which also affects ice conditions, has an important effect on the fledging success of eiders. Outbreaks of duckling disease epidemics may be the primary mechanism underlying this effect. Eider females are in poorer condition after severe winters and cannot allocate as much resources to breeding, which may impair the immune defense of ducklings. Global climate warming is expected to increase the future breeding success of eiders in our study population.  相似文献   

3.
The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979–2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.  相似文献   

4.
Large‐scale climate fluctuations, such as the North Atlantic Oscillation (NAO), have a marked effect on the timing of spring migration of birds. It has however been suggested that long‐distance migrants wintering in Africa could respond less to NAO than short‐distance migrants wintering in Europe, making them more vulnerable to climatic changes. We studied whether migratory boreal and arctic bird species returning from different wintering areas show differences in responses to the NAO in the timing of their spring migration. We used data on 75 species from two bird observatories in northern Europe (60°N). By extending the examination to the whole distribution of spring migration and to a taxonomically diverse set of birds, we aimed at finding general patterns of the effects of climate fluctuation on the timing of avian migration. Most species arrived earlier after winters with high NAO index. The degree of NAO‐response diminished with the phase of migration: the early part of a species’ migratory population responded more strongly than the later part. Early phase waterfowl responded strongest to NAO, but in later phases their response faded to non‐significant. This pattern may be related to winter severity and/or ice conditions in the Baltic. In the two other groups, gulls and waders and passerines, all phases of migration responded to NAO and fading with phase was non‐significant. The difference between waterfowl and other groups may be related to differences between the phenological development of their respective macrohabitats. Wintering area affected the strength of NAO response in a complicated way. On average medium distance migrants responded most strongly, followed by short‐distance migrants and partial migrants. Our results concerning the response of long‐distance migrants were difficult to interpret: there is an overall weak yet statistically significant effect, but patterns with phase of migration need further study. Our results highlight the importance of examining the whole distribution of migration and warrant the use of data sets from several sampling sites when studying climatic effects on the timing of avian life‐history events.  相似文献   

5.
North Atlantic Oscillation and timing of spring migration in birds   总被引:18,自引:0,他引:18  
Migrant birds have been trapped on the island of Helgoland (southeastern North Sea) since 1909, with methods and sampling effort remaining unchanged throughout the last four decades. In 12 short/medium-distance migrants and 12 long-distance migrants (23 passerines plus the European woodcock) sample sizes were sufficient to calculate mean spring passage (msp) times and to relate these to climate change. All but one species, passing Helgoland en route to their breeding areas (mainly in Scandinavia), show a trend towards earlier msp-time, which is significant in 7 short/medium-distance migrants and 10 long-distance migrants. The msp-times advanced by 0.05-0.28 days per year, short/medium-distance migrants not differing from long-distance migrants. In 23 out of the 24 species, earlier msp-times coincide with local warmer msp-temperatures (significantly in 11 and 7 species of the two groups, respectively). Even more striking is the relation to a large-scale phenomenon, the North Atlantic Oscillation (NAO), during the last four decades. Again, in 23 out of the 24 species, an earlier msp-time coincides with higher NAO indices (significantly in 9 and 12 species, respectively). The NAO index can also explain differences and similarities in spring migration strategies, as well as migration routes within Europe.  相似文献   

6.
Spring arrival of birds depends on the North Atlantic Oscillation   总被引:10,自引:0,他引:10  
The timing of arrival of 81 migratory species in response to the North Atlantic Oscillation (NAO) was studied at two Finnish bird observatories (1970–99). Timing was determined for the first migrants and for the peak of migration, as well as for the early, median and late phases of migration, defined as the dates when the seasonal cumulative sum of birds reached 5%, 50% and 95%, respectively. For most species, the timing of arrival correlated negatively with the NAO in all phases of migration: the correlation was significant for 79% of species studied. Thus, most species arrived in Finland early when the NAO was positive and indicative of mild and rainy winters in northern Europe. Although all phases of migration correlated negatively with the NAO, the correlations were more negative for the early than for the late phases of migration. Since the NAO did not show a significant trend during the study period, the correlations indicate that the timing of birds followed stochastic fluctuations in the NAO. This finding suggests that most Finnish migratory birds are able to adjust the timing of spring arrival in response to climatic change without time delay.  相似文献   

7.
We studied long-term trends and the yearly variation in mean spring passage time in 36 passerine bird species trapped at Ottenby Bird Observatory in south-eastern Sweden. Between the years 1952–2002, data were available for 22–45 years depending on species. Most long-distance migrant species passed progressively earlier over the study period (range: 2.5 days earlier to 0.7 days later per 10 years, with an average of 0.9 days earlier per 10 years). The annual variation in timing of migration in most species, regardless of migration distance, correlated negatively with the winter index of the North Atlantic Oscillation (NAO), a large-scale climate phenomenon influencing the climate in the North Atlantic region. Birds passed earlier after mild and humid winters, corresponding to the high phase of the NAO. This corroborates the pattern found at a nearby migration site with a comparable dataset (Helgoland, 600 km WSW of Ottenby). However, short/medium-distance migrant species at Ottenby, in contrast to the situation at Helgoland, have shown no general trend of earlier passage in recent years. This was probably a consequence of the shorter study period at Ottenby, which included only the last 22–32 years (41 years at Helgoland), when the NAO showed no significant trend. At the species-specific level, the long-term trends in passage time were similar at the two sites, and there was some congruence to the extent that a given species was affected by NAO. Long-distance migrants wintering south and south-east of the breeding grounds showed some of the strongest changes in long-term trends (passing progressively earlier) at Ottenby, and for some of these species passage time varied negatively with NAO. Obviously, and contrary to previous suggestions, variations in NAO also influence birds migrating through eastern Europe, although the direct or indirect mechanisms through which this is achieved are unknown.  相似文献   

8.
Climate change is affecting the phenology of seasonal events in Europe and the Northern Hemisphere, as shown by several studies of birds’ timing of migration and reproduction. Here, we analyse the long-term (1982–2006) trends of first arrival dates of four long-distance migratory birds [swift (Apus apus), nightingale (Luscinia megarhynchos), barn swallow (Hirundo rustica), and house martin (Delichon urbicum)] and first egg laying dates of two migrant (swift, barn swallow) and two resident species [starling (Sturnus vulgaris), Italian sparrow (Passer italiae)] at a study site in northern Italy. We also addressed the effects of local weather (temperature and precipitation) and a climate index (the North Atlantic Oscillation, NAO) on the interannual variability of phenological events. We found that the swift and the barn swallow significantly advanced both arrival and laying dates, whereas all other species did not show any significant temporal trend in either arrival or laying date. The earlier arrival of swifts was explained by increasing local temperatures in April, whereas this was not the case for arrival dates of swallows and first egg laying dates of both species. In addition, arrival dates of house martins were earlier following high NAO winters, while nightingale arrival was earlier when local spring rainfall was greater. Finally, Italian sparrow onset of reproduction was anticipated by greater spring rainfall, but delayed by high spring NAO anomalies, and swift’s onset of reproduction was anticipated by abundant rainfall prior to reproduction. There were no significant temporal trends in the interval between onset of laying and arrival in either the swift or the barn swallow. Our findings therefore indicate that birds may show idiosyncratic responses to climate variability at different spatial scales, though some species may be adjusting their calendar to rapidly changing climatic conditions.  相似文献   

9.
Climate change has advanced the breeding dates of many bird species, but for few species we know whether this advancement is sufficient to track the advancement of the underlying levels of the food chain. For the long-distance migratory pied flycatcher Ficedula hypoleuca the advancement in breeding time has been insufficient to maintain the synchrony with their main food sources. The timing of arrival in the breeding areas from their African wintering grounds is likely to constrain the advancement of breeding date. We hypothesise that this is because in Africa they cannot predict the advancement of spring in their breeding habitat. However, long-distance migrants may advance their arrival time by migrating faster when circumstances en route are favourable. In this study we show that both arrival and breeding date depend on temperatures at their main North African staging grounds, as well as on temperature at the breeding grounds. Male arrival and average laying date were not correlated, but the positive effect of temperature in North Africa on breeding dates suggests that breeding date is indeed constrained by arrival of females. Long-distance migrants thus are able to adjust arrival and hence breeding by faster spring migration, but the degree of adjustment is probably limited as timing schedules in spring are tight. Furthermore, as climate change is affecting temperatures differently along the migratory flyway and the breeding areas, it is unlikely that arrival dates are advanced at the same rate as the timing of breeding should advance, given the advancement of the underlying levels of the food chain.  相似文献   

10.
1.?Climate change has been associated with shifts in the timing of biological events, including the spring arrival of migratory birds. Early arrival at breeding sites is an important life-history trait, usually associated with higher breeding success and therefore, susceptible to selection and evolution in response to changing climatic conditions. 2.?Here, we examine the effect of changes in the environmental conditions of wintering and passage areas on the mean passage time of 13 trans-Saharan passerines during their spring migration through the western Mediterranean over the 15 years from 1993 to 2007. 3.?We found that most of the species studied have been advancing the timing of their passage in recent years. However, annual variation in the mean date of passage was positively correlated with vegetation growth (measured as the normalized difference vegetation index [NDVI]) both in the Sahel (the region of departure) and in northern Africa (the passage area). Thus, migration dates were delayed in years with high primary productivity in passage and wintering zones. All species seem to respond similarly to NDVI in the Sahel; however, late migrants were less affected by ecological conditions in northern Africa than those migrating earlier, suggesting differences based on species ecology. 4.?Mean timing of passage was not related to the North Atlantic Oscillation (NAO), El Ni?o-Southern Oscillation (ENSO), temperature or NDVI in the species-specific wintering areas (the overwintering region) when analysed in combination with the other covariates. 5.?Our findings show that ecological conditions in the winter quarters (specifically the Sahel) and en route are relevant factors influencing trends in the passage dates of trans-Saharan migratory birds on the southern fringe of Europe. Possible long-term consequences for late arriving spring migrants are discussed.  相似文献   

11.
Long‐distance migrants may respond to climate change in breeding, wintering or staging area by changing their phenology. The geographical variation in such responses (e.g. coastal vs. continental Europe) and the relative importance of climate at different spatial scales remain unclear. Here we analysed variation in first arrival dates (FADs) and laying dates of the Collared Flycatcher Ficedula albicollis in a central European population, from 1973 to 2002. The North Atlantic Oscillation (NAO) index correlated weakly with local temperature during the laying period. Decreasing spring temperatures until 1980 were associated with a trend towards later laying. The rate of warming (0.2 °C per year) and laying advancement (0.4 days per year) since 1980 are amongst the highest values reported elsewhere. This long‐term trend in laying date was largely explained by the change in climatic factors. The negative effect of local spring temperature on laying was relatively stronger than that of NAO. The number of clutches initiated on a particular day was marginally affected by the temperature 3 days prior to laying and the response of females to daily variation in temperature did not change over years. Correspondence between the average population‐level and the individual‐level responses of laying date to climate variation suggests that the advancement of laying was due to phenotypic plasticity. Despite warmer springs and advanced laying, FADs did not change over years and were not correlated with local spring temperature. Marginal evidence suggests later departure from wintering grounds and faster migration across staging areas in warmer conditions. Advancement of arrival was probably constrained by low local temperatures in early spring just before arrival that have not changed over years. The interval between first arrival and laying has declined since 1980 (0.5 days per year), but the increasing temperature during that period may have kept the food supply approximately unchanged.  相似文献   

12.
Ecological processes are changing in response to climatic warming. Birds, in particular, have been documented to arrive and breed earlier in spring and this has been attributed to elevated spring temperatures. It is not clear, however, how long-distance migratory birds that overwinter thousands of kilometers to the south in the tropics cue into changes in temperature or plant phenology on northern breeding areas. We explored the relationships between the timing and rate of spring migration of long-distance migratory birds, and variables such as temperature, the North Atlantic Oscillation (NAO) and plant phenology, using mist net capture data from three ringing stations in North America over a 40-year period. Mean April/May temperatures in eastern North America varied over a 5°C range, but with no significant trend during this period. Similarly, we found few significant trends toward earlier median capture dates of birds. Median capture dates were not related to the NAO, but were inversely correlated to spring temperatures for almost all species. For every 1°C increase in spring temperature, median capture dates of migratory birds averaged, across species, one day earlier. Lilac (Syringa vulgaris) budburst, however, averaged 3 days earlier for every 1°C increase in spring temperature, suggesting that the impact of temperature on plant phenology is three times greater than on bird phenology. To address whether migratory birds adjust their rate of northward migration to changes in temperature, we compared median capture dates for 15 species between a ringing station on the Gulf Coast of Louisiana in the southern USA with two stations approximately 2,500 km to the north. The interval between median capture dates in Louisiana and at the other two ringing stations was inversely correlated with temperature, with an average interval of 22 days, that decreased by 0.8 days per 1°C increase in temperature. Our results suggest that, although the onset of migration may be determined endogenously, the timing of migration is flexible and can be adjusted in response to variation in weather and/or phenology along migration routes.  相似文献   

13.
Many migrant bird species that breed in the Northern Hemisphere show advancement in spring arrival dates. The North Atlantic Oscillation (NAO) index is one of the climatic variables that have been most often investigated and shown to be correlated with these changes in spring arrival. Although the NAO is often claimed to be a good predictor or even to have a marked effect on interannual changes in spring migration phenology of Northern Hemisphere breeding birds, the results on relations between spring migration phenology and NAO show a large variety, ranging from no, over weak, to a strong association. Several factors, such as geographic location, migration phase, and the NAO index time window, have been suggested to partly explain these observed differences in association. A combination of a literature meta‐analysis, and a meta‐analysis and sliding time window analysis of a dataset of 23 short‐ and long‐distance migrants from the constant‐effort trapping garden at Helgoland, Germany, however, paints a completely different picture. We found a statistically significant overall effect size of the NAO on spring migration phenology (coefficient = ?0.14, SE = 0.054), but this on average only explains 0%–6% of the variance in spring migration phenology across all species. As such, the value and biological meaning of the NAO as a general predictor or explanatory variable for climate change effects on migration phenology of birds, seems highly questionable. We found little to no definite support for previously suggested factors, such as geographic location, migration phenology phase, or the NAO time window, to explain the heterogeneity in correlation differences. We, however, did find compelling evidence that the lack of accounting for trends in both time series has led to strongly inflated (spurious) correlations in many studies (coefficient = ?0.13, SE = 0.019).  相似文献   

14.
ABSTRACT In apparent response to recent periods of global warming, some migratory birds now arrive earlier at stopover sites and breeding grounds. However, the effects of this warming on arrival times vary among locations and species. Migration timing is generally correlated with temperature, with earlier arrival during warm years than during cold years, so local variation in climate change might produce different effects on migration phenology in different geographic regions. We examined trends in first spring arrival dates (FADs) for 44 species of common migrant birds in South Dakota (1971–2006) and Minnesota (1964–2005) using observations compiled by South Dakota and Minnesota Ornithologists’ Unions. We found significant trends in FAD over time for 20 species (18 arriving earlier and two later) in South Dakota and 16 species (all earlier) in Minnesota. Of these species, 10 showed similar significant trends for both states. All 10 of these species exhibited significantly earlier arrival, and all were early spring migrants, with median FADs before 10 April in both states. Eighteen of the 44 species showed significant negative correlations of FADs with either winter (December–February) or spring (arrival month plus previous month) temperatures in one or both states. Interestingly, spring temperatures in both South Dakota and Minnesota did not warm significantly from 1971–2006, but winter temperatures in both states warmed significantly over the same time period. This suggests that the warmer winters disproportionately affected early spring migrants, especially those associated with aquatic habitats (seven of the 10 species showing significantly earlier spring arrival in both states). The stronger response to climate change by early spring migrants in our study is consistent with the results of several other studies, and suggests that migrants, especially early migrants, are capable of responding to local temperature conditions experienced on wintering grounds or along the migration route.  相似文献   

15.
Coinciding with increasing spring temperatures in Europe, many migrants have advanced their arrival or passage times over the last decades. However, some species, namely long-distance migrants, could be constrained in their arrival dates due to their largely inherited migratory behaviour and thus a likely inflexibility in their response to exogenous factors. To examine this hypothesis for pied flycatchers (Ficedula hypoleuca), we tested the effects of the temperature regimes along their migration routes north of the Sahara on their arrival times in central Europe. To do so, we developed a site-independent large-scale approach based on temperature data available on the Internet. Temperature regimes along the migration routes of pied flycatchers within Europe convincingly correlate with their first arrival times. It can be concluded that the progression of spring migration in this species is strongly influenced by temperature en route. Because of the recent inconsistent climatic changes in various parts of Europe, we hypothesize that individuals migrating along different routes will be unequally affected by further climatic changes.  相似文献   

16.
Hurlbert AH  Liang Z 《PloS one》2012,7(2):e31662
A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3-6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing.  相似文献   

17.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

18.
One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984–2004) in forests, a habitat characterized by a short spring food peak, but that they did not decline in less seasonal marshes. Also, within generalist long-distance migrant species, populations declined more strongly in forests than in marshes. Forest-inhabiting migrant species arriving latest in spring declined most sharply, probably because their mismatch with the peak in food supply is greatest. Residents and short-distance migrants had non-declining populations in both habitats, suggesting that habitat quality did not deteriorate. Habitat-related differences in trends were most probably caused by climate change because at a European scale, long-distance migrants in forests declined more severely in western Europe, where springs have become considerably warmer, when compared with northern Europe, where temperatures during spring arrival and breeding have increased less. Our results suggest that trophic mismatches may have become a major cause for population declines in long-distance migrants in highly seasonal habitats.  相似文献   

19.
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants.  相似文献   

20.
Climate-related changes associated with the California marine ecosystem have been documented; however, there are no studies assessing changes in terrestrial vertebrate phenology on the Pacific coast of western North America. We analyze the spring phenology of 21 Nearctic-Neotropical migratory songbird species in central and northern CA. Using observational and banding data at multiple sites, we evaluate evidence for a change in arrival timing being linked to either nonclimatic or multiscalar climatic explanations. Using correlation analysis, of the 13 species with a significant ( P <0.10) change in arrival, the arrival timing of 10 species (77%) is associated with both temperature and a large-scale climate oscillation index (El Niño Southern Oscillation, ENSO; North Atlantic Oscillation, NAO; and/or Pacific Decadal Oscillation, PDO) at least at one location. Eight of the 13 species (62%) are advancing their migratory timing. All species for which spring arrival is associated with climate at multiple locations are exhibiting changes ( n =5) and all species lacking evidence for association between migration phenology and climate ( n =3) exhibit no change. Migrants tend to arrive earlier in association with warmer temperatures, positive NAO indices, and stronger ENSO indices. Twelve species negatively correlate ( P ≤0.05) with local or regional temperature at least at one location; five species negatively correlate with ENSO. Eleven species' arrival is correlated ( P ≤0.05) with NAO; 10 are negatively associated. After an exhaustive literature search, this is apparently the first documentation of an association between NAO and migratory phenology in western North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号