首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The transient temperature response of the resting human forearm immersed in water at temperatures (Tw) ranging from 15 to 36 degrees C was investigated. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during the 3-h immersions. Tt was measured every 5 mm, from the longitudinal axis of the forearm to the skin surface. Skin temperature, rectal temperature, and blood flow (Q) were also measured during the immersions. The maximum rate of change of the forearm mean tissue temperature (Tt, max) occurred during the first 5 min of the immersion. Tt, max was linearly dependent on Tw (P less than 0.001), with mean values (SEM) ranging from -0.8 (0.1) degrees C.min-1 at 15 degrees C to 0.2 (0.1) degrees C.min-1 at 36 degrees C. The maximum rate of change of compartment mean temperature was dependent (P less than 0.001) on the radial distance from the longitudinal axis of the forearm. The half-time for thermal steady state of the forearm mean tissue temperature was linearly dependent on Tw between 30 and 36 degrees C (P less than 0.01), with mean values (SEM) ranging from 15.6 (0.6) min at 30 degrees C to 9.7 (1.2) min at 36 degrees C and not different between 15 and 30 degrees C, averaging 16.2 (0.6) min. There was a significant linear relationship between the half-time for thermal steady-state of the compartment mean temperature and the radial distance from the longitudinal axis of the forearm for each value of Tw tested (P less than 0.001). The data of the present study suggest that the forearm Q is an important determinant of the transient thermal response of the forearm tissue during thermal stress.  相似文献   

2.
The apparent conductance (Kss, in W.m-2.degrees C-1) of a given region of superficial shell (on the thigh, fat + skin) was determined on four nonsweating and nonshivering subjects, resting and exercising (200 W) in water [water temperature (Tw) 22-23 degrees C] Kss = Hss/(Tsf-Tsk) where Hss is the skin-to-water heat flow directly measured by heat flow transducers and Tsf and Tsk are the temperatures of the subcutaneous fat at a known depth below the skin surface and of the skin surface, respectively. The convective heat flow (qc) through the superficial shell was then estimated as qc = (Tsf - Tsk).(Kss - Kss,min), assuming that at rest Kss was minimal (Kss,min) and resting qc = 0. The duration of immersion was set to allow rectal temperature (Tre) to reach approximately 37 degrees C at the end of rest and approximately 38 degrees C at the end of exercise. Except at the highest Tw used, Kss at the start of exercise was always Kss,min and averaged 51 W.m-2.degrees C-1 (range 33-57 W.m-2.degrees C-1) across subjects, and qc was zero. At the end of exercise at the highest Tw used for each subject, Kss averaged 97 W.m-2.degrees C-1 (range 77-108 W.m-2.degrees C-1) and qc averaged 53% (range 48-61%) of Hss (mean Hss = 233 W.m-2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The in vivo or effective thermal conductivity (keff) of muscle tissue of the human forearm was determined through a finite-element (FE) model solution of the bioheat equation. Data were obtained from steady-state temperatures measured in the forearm after 3 h of immersion in water at temperatures (Tw) of 15 (n = 6), 20 (n = 5), and 30 degrees C (n = 5). Temperatures were measured every 0.5 cm from the longitudinal axis of the forearm to the skin approximately 9 cm distal from the elbow. Heat flux was measured at two sites on the skin adjacent to the temperature probe. The FE model is comprised of concentric annular compartments with boundaries defined by the location of temperature measurements. Through this approach, it was possible to include both the metabolic heat production and the convective heat transfer between blood and tissue at two levels of blood flow, one perfusing the compartment and the other passing through the compartment. Without heat exchange at the passing blood flow level, the arterial blood temperature would be assumed to have a constant value everywhere in the forearm muscles, leading to a solution of the bioheat equation that greatly underpredicts keff. The extent of convective heat exchange at the passing blood flow level is estimated to be approximately 60% of the total heat exchange between blood and tissue. Concurrent with this heat exchange is a decrease in the temperature of the arterial blood as it flows radially from the axis to the skin of the forearm, and this decrease is enhanced with a lowered Tw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The purpose of the present study was to investigate the effect of a range of water temperatures (Tw from 15 to 36 degrees C) on the tissue temperature profile of the resting human forearm at thermal stability. Tissue temperature (Tti) was continuously monitored by a calibrated multicouple probe during 3 h of immersion of the forearm. The probe was implanted approximately 9 cm distal from the olecranon process along the ulnar ridge. Tti was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tti, skin temperature (Tsk), rectal temperature (Tre), and blood flow were measured during the immersions. For all temperature conditions, the temperature profile inside the limb was linear as a function of the radial distance from the forearm axis (P less than 0.001). Temperature gradient measured in the forearm ranged from 0.2 +/- 0.1 degrees C C cm (Tw = 36 degrees C) to 2.3 +/- 0.5 degrees C cm (Tw = 15 degrees C). The maximal Tti was measured in all cases at the longitudinal axis of the forearm and was in all experimental conditions lower than Tre. On immersion at Tw less than 36 degrees C, the whole forearm can be considered to be part of the shell of the body. With these experimental data, mathematical equations were developed to predict, with an accuracy of at least 0.6 degrees C, the Tti at any depth inside the forearm at steady state during thermal stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purpose of the present study was to investigate the intramuscular temperature fluctuations in the human forearm immersed in water at 15 degrees C. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during 3 h immersion of the forearm. The probe was implanted approximately 90 mm distal from the olecranon process along the ulnar ridge. Tt was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tt, rectal temperature, skin temperature and heat loss of the forearm were measured during the immersions. Five of the six subjects tested showed evidence of cyclic temperature fluctuations in the forearm limited to the muscle tissue. The first increase of the muscle temperature was observed 75 (SE 6) min after the onset of the immersion, and the duration of the cycle averaged 36 (SE 3) min. The maximum increase of the muscle temperature, which ranged between 0.4 degrees C and 1.0 degrees C, was measured at the axis of the forearm, and was inversely correlated to the circumference of the subject's forearm (P less than 0.05). No corresponding increases of the skin temperature and heat loss of the forearm were observed for the complete duration of the immersion. These data support the hypothesis of a significant contribution of the muscle vessels during cold-induced vasodilatation in the forearm.  相似文献   

6.
Thermoregulatory responses were studied in 10 men and 8 women at rest in air and during 1-h immersion in water at 20, 24, and 28 degrees C. For men of high body fat (27.6%), rectal temperature (Tre) and oxygen consumption (VO2) were maintained at air values at all water temperatures (Tw). For men of average (16.8%) and low (9.2%) fat the change in Tre (delta Tre) was inversely related to body fat at all Tw with VO2 increasing to 1.07 l X min-1 for a -1.6 degrees C delta Tre for lean men. For women of average (25.2%) and low (18.5%) fat Tre decreased steadily during immersion at all Tw. The greatest changes occurred at 20 degrees C with little differences in delta Tre and VO2 noted between these groups of women. In comparison with males of similar percent fat, Tre dropped to a greater extent (P less than 0.05) in females at 20 and 24 degrees C. Stated somewhat differently, lean women with twice the percentage of fat have similar delta Tre as lean men at all Tw. For delta Tre greater than -1.0 degree C men showed significantly greater (P less than 0.05) thermogenesis compared with women. The differences in thermoregulation between men and women during cold stress at rest may be due partly to the sensitivity of the thermogenic response as well as the significant differences in lean body weight and surface area-to-mass ratio between the sexes.  相似文献   

7.
The data collected by the authors in four experimental series have been analysed together with data from the literature, to study the relationship between mean skin temperature and climatic parameters, subject metabolic rate and clothing insulation. The subjects involved in the various studies were young male subjects, unacclimatized to heat. The range of conditions examined involved mean skin temperatures between 33 degrees C and 38 degrees C, air temperatures (Ta) between 23 degrees C and 50 degrees C, ambient water vapour pressures (Pa) between 1 and 4.8 kPa, air velocities (Va) between 0.2 and 0.9 m.s-1, metabolic rates (M) between 50 and 270 W.m-2, and Clo values between 0.1 and 0.6. In 95% of the data, mean radiant temperature was within +/- 3 degrees C of air temperature. Based on 190 data averaged over individual values, the following equation was derived by a multiple linear regression technique: Tsk = 30.0 + 0.138 Ta + 0.254 Pa-0.57 Va + 1.28.10(-3) M-0.553 Clo. This equation was used to predict mean skin temperature from 629 individual data. The difference between observed and predicted values was within +/- 0.6 degrees C in 70% of the cases and within +/- 1 degrees C in 90% of the cases. It is concluded that the proposed formula may be used to predict mean skin temperature with satisfactory accuracy in nude to lightly clad subjects exposed to warm ambient conditions with no significant radiant heat load.  相似文献   

8.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Four male subjects were examined to assess the relationship of body fat content to deep muscle temperature and the endurance of a fatiguing isometric handgrip contraction at a tension set at 40% MVC. Muscle temperature was altered by the immersion of the forearm in water at temperatures varying from 7.5 to 40 degrees C. In all subjects, there was a water bath temperature above and below which isometric endurance decreased markedly; the difference among individuals was solely accounted for by the individual's body fat content. Thus, subjects with higher body fat content required lower bath temperatures to cool the forearm musculature to its optimum temperature, which we found to always be approximately 27 degrees C measured 2 cm perpendicularly to the skin in the belly of the brachioradialis muscle. Further, in one subject, we found that a reduction in this subject's body fat content resulted in a corresponding increase in the water bath temperature necessary to cool his muscles to their optimum isometric performance. The data demonstrate the striking insulative power of the thin layer of fat around the forearm in man in protecting shell tissues from cold exposure.  相似文献   

10.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

11.
Muscle glycogen utilization during shivering thermogenesis in humans   总被引:2,自引:0,他引:2  
The purpose of the present study was to clarify the importance of skeletal muscle glycogen as a fuel for shivering thermogenesis in humans during cold-water immersion. Fourteen seminude subjects were immersed to the shoulders in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Biopsies from the vastus lateralis muscle and venous blood samples were obtained before and immediately after the immersion. Metabolic rate increased during the immersion to 3.5 +/- 0.3 (SE) times resting values, whereas Tre decreased by 0.9 degrees C to approximately 35.8 degrees C at the end of the immersion. Intramuscular glycogen concentration in the vastus lateralis decreased from 410 +/- 15 to 332 +/- 18 mmol glucose/kg dry muscle, with each subject showing a decrease (P less than 0.001). Plasma volume decreased (P less than 0.001) markedly during the immersion (-24 +/- 1%). After correcting for this decrease, blood lactate and plasma glycerol levels increased by 60 (P less than 0.05) and 38% (P less than 0.01), respectively, whereas plasma glucose levels were reduced by 20% after the immersion (P less than 0.001). The mean expiratory exchange ratio showed a biphasic pattern, increasing initially during the first 30 min of the immersion from 0.80 +/- 0.06 to 0.85 +/- 0.05 (P less than 0.01) and decreasing thereafter toward basal values. The results demonstrate clearly that intramuscular glycogen reserves are used as a metabolic substrate to fuel intensive thermogenic shivering activity of human skeletal muscle.  相似文献   

12.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.  相似文献   

13.
Blood flow of the finger and the forearm were measured in five male subjects by venous occlusion plethysmography using mercury-in-Silastic strain gauges in either a cool-dry (COOL: 25 degrees C, 40% relative humidity), a hot-dry (WARM: 35 degrees C, 40% relative humidity), or a hot-wet (HOT: 35 degrees C, 80% relative humidity) environment. One hand or forearm was immersed in a water bath, the temperature (Tw) of which was raised every 10 min by steps of 2 degrees C until it reached 41 degrees or 43 degrees C. While the other hand or forearm was kept immersed in a water bath (Tw, 35 degrees C), blood flow in the heated side (BFw) was compared with the corresponding blood flow in the control side (BFc). Under WARM or HOT conditions, finger BFw was significantly lower than finger BFc at a Tw of 39-41 degrees C in the majority of subjects. When Tw was raised to 43 degrees C, however, finger BFw became higher than BFc in nearly half of the subjects. In the COOL state, finger BFw did not decrease but increased steadily when Tw increased from 37 degrees to 43 degrees C. In the forearm, BFw increased steadily with increasing Tw even in WARM-HOT environments. No such heat-induced vasoconstriction was observed in the forearm. From these results we conclude that in hyperthermic subjects, the rise in local temperature to above core temperature produces vasoconstriction in the fingers, an area where no thermal sweating takes place.  相似文献   

14.
The influence of exercise intensity on thermoregulation was studied in 8 men and 8 women volunteers during three levels of arm-leg exercise (level I: 700 ml oxygen (O2).min-1; level II: 1250 ml O2.min-1; level III: 1700 ml O2.min-1) for 1 h in water at 20 and 28 degrees C (Tw). For the men in Tw 28 degrees C the rectal temperature (Tre) fell 0.79 degree C (P less than 0.05) during immersion in both rest and level-I exercise. With level-II exercise a drop in Tre of 0.54 degree C (P less than 0.05) was noted, while at level-III exercise Tre did not change from the pre-immersion value. At Tw of 20 degrees C, Tre fell throughout immersion with no significant difference in final Tre observed between rest and any exercise level. For the women at rest at Tw 28 degrees C, Tre fell 0.80 degree C (P less than 0.05) below the pre-immersion value. With the two more intense levels of exercise Tre did not decrease during immersion. In Tw 20 degrees C, the women maintained higher Tre (P less than 0.05) during level-II and level-III exercise compared to rest and exercise at level I. The Tre responses were related to changes in tissue insulation (I(t)) between rest and exercise with the largest reductions in I(t) noted between rest and level-I exercise across Tw and gender. For mean and women of similar percentage body fat, decreases in Tre were greater for the women at rest and level-I exercise in Tw 20 degrees C (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study examined the thermal and metabolic responses of six men during exercise in water at critical temperature (Tcw, 31.2 +/- 0.5 degrees C), below Tcw (BTcw, 28.8 +/- 0.6 degrees C), at thermoneutrality (Ttn, 34 degrees C), and above Ttn (ATtn, 36 degrees C). At each water temperature (Tw) male volunteers wearing only swimming trunks completed four 1-h experiments while immersed up to the neck. During one experiment, subjects remained at rest (R), and the other three performed leg exercise (LE) at three different intensities (LE-1, 2 MET; LE-2, 3 MET; LE-3, 4 MET). In water warmer than Tcw, there was no difference in metabolic rate (M) during R. The M for each work load was independent of Tw. Esophageal temperature (Tes) remained unchanged during R in water of ATtn (36 degrees C). However, Tes significantly (P less than 0.05) declined over 1 h during R at Ttn (delta Tes = -0.39 degrees C), Tcw (delta Tes = -0.54 degrees C), and BTcw (delta Tes = -0.61 degrees C). All levels of underwater exercise elevated Tes and M compared with R at all Tw. In water colder than Tcw, the ratio of heat loss from limbs compared with the trunk became greater as LE intensity increased, indicating a preferential increase in heat loss from the limbs in cool water. Tissue insulation (Itissue) was lower during LE than at R and was inversely proportional to the increase in LE intensity. A linearly inverse relationship was established between Tw and M in maintaining thermal equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To study the influence of the menstrual cycle on whole body thermal balance and on thermoregulatory mechanisms, metabolic heat production (M) was measured by indirect calorimetry and total heat losses (H) were measured by direct calorimetry in nine women during the follicular (F) and the luteal (L) phases of the menstrual cycle. The subjects were studied while exposed for 90 min to neutral environmental conditions (ambient temperature 28 degrees C, relative humidity 40%) in a direct calorimeter. The values of M and H were not modified by the phase of the menstrual cycle. Furthermore, in both phases the subjects were in thermal equilibrium because M was similar to H (69.7 +/- 1.8 and 72.1 +/- 1.8 W in F and 70.4 +/- 1.9 and 71.4 +/- 1.7 W in L phases, respectively). Tympanic temperature (Tty) was 0.24 +/- 0.07 degrees C higher in the L than in the F phase (P less than 0.05), whereas mean skin temperature (Tsk) was unchanged. Calculated skin thermal conductance (Ksk) was lower in the L (17.9 +/- 0.6 W.m-2.degrees C-1) than in the F phase (20.1 +/- 1.1 W.m-2.degrees C-1; P less than 0.05). Calculated skin blood flow (Fsk) was also lower in the L (0.101 +/- 0.008 l.min-1.m-2) than in the F phase (0.131 +/- 0.015 l.min-1.m-2; P less than 0.05). Differences in Tty, Ksk, and Fsk were not correlated with changes in plasma progesterone concentration. It is concluded that, during the L phase, a decreased thermal conductance in women exposed to a neutral environment allows the maintenance of a higher internal temperature.  相似文献   

17.
Certain previous studies suggest, as hypothesized herein, that heat balance (i.e., when heat loss is matched by heat production) is attained before stabilization of body temperatures during cold exposure. This phenomenon is explained through a theoretical analysis of heat distribution in the body applied to an experiment involving cold water immersion. Six healthy and fit men (mean +/- SD of age = 37.5 +/- 6.5 yr, height = 1.79 +/- 0.07 m, mass = 81.8 +/- 9.5 kg, body fat = 17.3 +/- 4.2%, maximal O2 uptake = 46.9 +/- 5.5 l/min) were immersed in water ranging from 16.4 to 24.1 degrees C for up to 10 h. Core temperature (Tco) underwent an insignificant transient rise during the first hour of immersion, then declined steadily for several hours, although no subject's Tco reached 35 degrees C. Despite the continued decrease in Tco, shivering had reached a steady state of approximately 2 x resting metabolism. Heat debt peaked at 932 +/- 334 kJ after 2 h of immersion, indicating the attainment of heat balance, but unexpectedly proceeded to decline at approximately 48 kJ/h, indicating a recovery of mean body temperature. These observations were rationalized by introducing a third compartment of the body, comprising fat, connective tissue, muscle, and bone, between the core (viscera and vessels) and skin. Temperature change in this "mid region" can account for the incongruity between the body's heat debt and the changes in only the core and skin temperatures. The mid region temperature decreased by 3.7 +/- 1.1 degrees C at maximal heat debt and increased slowly thereafter. The reversal in heat debt might help explain why shivering drive failed to respond to a continued decrease in Tco, as shivering drive might be modulated by changes in body heat content.  相似文献   

18.
The vasodilator effect of anaesthetic agents on cutaneous vessels has often been investigated. In contrast, although subcutaneous tissue is concerned with metabolism and thermoregulation, the effects of anaesthesia on subcutaneous blood flow have not been well documented. The purpose of this study was to determine the magnitude of changes in cutaneous and subcutaneous blood flow during general anaesthesia in Man. Anaesthesia was induced with flunitrazepam in 15 patients before facial plastic surgery. Blood flow was estimated using heat thermal clearance (HC). Two HC sensors in different areas allowed the measurement of superficial and deep HC. Systolic (SABP), diastolic (DABP) and mean arterial blood pressure (MABP), heart rate (HR), and rectal and mean skin temperature were also recorded. After induction of anaesthesia, HR increased significantly (p less than 0.05) whereas SABP, DABP and MABP remained unchanged. The rectal-toe temperature gradient fell from 6.3 +/- 4.1 degrees C to 3.4 +/- 1.1 degrees C (p less than 0.01) suggesting a reduction in vasomotor tone. Superficial HC increased from 0.37 +/- 0.06 to 0.42 +/- 0.08 W.m-1.degrees C-1 (p less than 0.05) whereas deep HC decreased from 0.33 +/- 0.07 to 0.31 +/- 0.09 W.m-1.degrees C-1 (NS) and returned to the control value thereafter. Rectal temperature and mean skin temperature were unchanged. The changes in deep HC are similar to those previously observed in muscle during induction of anaesthesia. Our results show that anaesthesia mainly affects cutaneous blood flow, without any significant change in subcutaneous blood flow during the early phase of anaesthesia in human beings.  相似文献   

19.
It is well accepted that the steady-state isometric force following active stretching of a muscle is greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This property of skeletal muscle has been called residual force enhancement (FE). Despite decades of research the mechanisms responsible for FE have remained largely unknown. Based on previous studies showing increases in FE in fibers in which cross-bridges were biased towards weakly bound states, we hypothesized that FE might be associated with a stretch-induced facilitation of transitioning from weakly to strongly bound cross-bridges. In order to test this hypothesis, single fibers (n=11) from the lumbrical muscles of frog (Rana pipiens) were used to determine FE at temperatures of 7 and 20 degrees C. At the cold temperature, cross-bridges are biased towards weakly bound states, therefore we expected FE to be greater at 7 degrees C compared to 20 degrees C. The average FE was significantly greater at 7 degrees C (11.5+/-1.1%) than at 20 degrees C (7.8+/-1.0%), as expected. The enhancement of force/stiffness was also significantly greater at the low (13.3+/-1.4%) compared to the high temperature (5.6+/-1.7%), indicating an increased conversion from weakly to strongly bound cross-bridges at the low temperature. We conclude from the results of this study that muscle preparations that are biased towards weakly bound cross-bridge states show increased FE for given stretch conditions, thereby supporting the idea that FE might be caused, in part, by a stretch-induced facilitation of the conversion of weakly to strongly bound cross-bridges.  相似文献   

20.
We examined the effect of high local forearm skin temperature (Tloc) on reflex cutaneous vasodilator responses to elevated whole-body skin (Tsk) and internal temperatures. One forearm was locally warmed to 42 degrees C while the other was left at ambient conditions to determine if a high Tloc could attenuate or abolish reflex vasodilation. Forearm blood flow (FBF) was monitored in both arms, increases being indicative of increases in skin blood flow (SkBF). In one protocol, Tsk was raised to 39-40 degrees C 30 min after Tloc in one arm had been raised to 42 degrees C. In a second protocol, Tsk and Tloc were elevated simultaneously. In protocol 1, the locally warmed arm showed little or no change in blood flow in response to increasing Tsk and esophageal temperature (average rise = 0.76 +/- 1.18 ml X 100 ml-1 X min-1), whereas FBF in the normothermic arm rose by an average of 8.84 +/- 3.85 ml X 100 ml-1 X min-1. In protocol 2, FBF in the normothermic arm converged with that in the warmed arm in three of four cases but did not surpass it. We conclude that local warming to 42 degrees C for 35-55 min prevents reflex forearm cutaneous vasodilator responses to whole-body heat stress. The data strongly suggest that this attenuation is via reduction or abolition of basal tone in the cutaneous arteriolar smooth muscle and that at a Tloc of 42 degrees C a maximum forearm SkBF has been achieved. Implicit in this conclusion is that local warming has been applied for a duration sufficient to achieve a plateau in FBF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号