首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunodeficiency virus (HIV)-mediated immune response may be beneficial or harmful, depending on the balance between expansion of HIV-specific T cells and the level of generalized immune activation. The current study utilizes multicolor cytokine flow cytometry to study HIV-specific T cells and T-cell activation in 179 chronically infected individuals at various stages of HIV disease, including those with low-level viremia in the absence of therapy ("controllers"), low-level drug-resistant viremia in the presence of therapy (partial controllers on antiretroviral therapy [PCAT]), and high-level viremia ("noncontrollers"). Compared to noncontrollers, controllers exhibited higher frequencies of HIV-specific interleukin-2-positive gamma interferon-positive (IL-2(+) IFN-gamma(+)) CD4(+) T cells. The presence of HIV-specific CD4(+) IL-2(+) T cells was associated with low levels of proliferating T cells within the less-differentiated T-cell subpopulations (defined by CD45RA, CCR7, CD27, and CD28). Despite prior history of progressive disease, PCAT patients exhibited many immunologic characteristics seen in controllers, including high frequencies of IL-2(+) IFN-gamma(+) CD4(+) T cells. Measures of immune activation were lower in all CD8(+) T-cell subsets in controllers and PCAT compared to noncontrollers. Thus, control of HIV replication is associated with high levels of HIV-specific IL-2(+) and IFN-gamma(+) CD4(+) T cells and low levels of T-cell activation. This immunologic state is one where the host responds to HIV by expanding but not exhausting HIV-specific T cells while maintaining a relatively quiescent immune system. Despite a history of advanced HIV disease, a subset of individuals with multidrug-resistant HIV exhibit an immunologic profile comparable to that of controllers, suggesting that functional immunity can be reconstituted with partially suppressive highly active antiretroviral therapy.  相似文献   

2.
To better understand the components of an effective immune response to human immunodeficiency virus (HIV), the CD8+ T-cell responses to HIV, hepatitis C virus (HCV), and cytomegalovirus (CMV) were compared with regard to frequency, immunodominance, phenotype, and interleukin-2 (IL-2) responsiveness. Responses were examined in rare patients exhibiting durable immune-mediated control over HIV, termed long-term nonprogressors (LTNP) or elite controllers, and patients with progressive HIV infection (progressors). The magnitude of the virus-specific CD8+ T-cell response targeting HIV, CMV, and HCV was not significantly different between LTNP and progressors, even though their capacity to proliferate to HIV antigens was preserved only in LTNP. In contrast to HIV-specific CD8+ T-cell responses of LTNP, HLA B5701-restricted responses within CMV pp65 were rare and did not dominate the total CMV-specific response. Virus-specific CD8+ T cells were predominantly CD27+45RO+ for HIV and CD2745RA+ for CMV; however, these phenotypes were highly variable and heavily influenced by the degree of viremia. Although IL-2 induced significant expansions of CMV-specific CD8+ T cells in LTNP and progressors by increasing both the numbers of cells entering the proliferating pool and the number of divisions, the proliferative capacity of a significant proportion of HIV-specific CD8+ T cells was not restored with exogenous IL-2. These results suggest that immunodominance by HLA B5701-restricted cells is specific to HIV infection in LTNP and is not a feature of responses to other chronic viral infections. They also suggest that poor responsiveness to IL-2 is a property of HIV-specific CD8+ T cells of progressors that is not shared with responses to other viruses over which immunologic control is maintained.Gaining a better understanding of the immunologic control of human immunodeficiency virus type 1 (HIV-1) is among the most critical goals for the rational design of HIV vaccines and immunotherapies. Although most HIV-infected patients develop high-level viremia, CD4+ T-cell depletion, and progressive disease, a rare subgroup of patients variably termed long-term nonprogressors (LTNP) or elite controllers restrict HIV replication to below 50 copies of HIV RNA/ml plasma and remain disease free for up to 25 years without antiretroviral therapy (ART). Measurements of HIV-specific immune responses in these patients, in comparison with progressors, are providing insights into mechanisms that mediate immunologic control or loss of control in humans. Although the mechanisms of restriction of HIV replication remain incompletely understood, a number of lines of evidence suggest that it is mediated by HIV-specific CD8+ T cells (reviewed in reference 51). High frequencies of HIV-specific CD8+ T cells specific for the autologous virus are observed in both LTNP and untreated progressors, suggesting that differences in immunologic control are mediated not by quantitative but more likely by qualitative features of the immune response.A number of qualitative features of the HIV-specific CD8+ T-cell response of LTNP or progressors have recently been proposed as the cause of immunologic control or loss of control, respectively. HLA B*5701 is highly overrepresented in LTNP, and the HIV-specific CD8+ T-cell response is highly focused on B5701-restricted peptides in B*5701+ LTNP but not in B*5701+ progressors (19, 50). In addition, there is a difference in surface markers between HIV- and cytomegalovirus (CMV)-specific CD8+ T cells thought to represent differences in maturation of the T-cell response (8). The CD8+ T cells of progressors are diminished in proliferative capacity and perforin upregulation in response to autologous HIV-infected CD4+ T cells (49). Recently, it has been proposed that this diminished proliferative capacity is due to a lack of paracrine or autocrine interleukin-2 (IL-2) production by HIV-specific CD4+ T cells or CD8+ T cells (41, 42, 75). Interpretation of proliferation studies is complicated by the fact that the effects of IL-2 were measured on the basis of 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) dye dilution of major histocompatibility complex (MHC) tetramer-positive cells. Because cell division over 6 days is an exponential function, IL-2 may induce small increases in the percentage of cells dividing or in the number of cell divisions that can result in large changes in the percent CFSElo cells, and yet the majority of antigen-specific cells may not proceed through the cell cycle. In addition, there are very limited data regarding whether the features of immunodominance, surface phenotype, and IL-2 responsiveness of HIV-specific CD8+ T cells extend to other chronic virus infections.In the present study, we examined these qualitative features within the response to HIV, CMV, or hepatitis C virus (HCV) across patient groups. We observed that the high degree of focus upon B5701-restricted peptides found in LTNP does not extend to the HCV- or CMV-specific responses. The phenotype of HIV- or CMV-specific CD8+ T cells was highly variable and heavily influenced by the degree of viremia. In addition, when both the number of divisions and the percentage of cells dividing were analyzed, proliferation of HIV-specific CD8+ T cells was refractory to IL-2 stimulation, unlike that of CMV-specific cells. These results offer important insights into qualitative features of the HIV-specific CD8+ T-cell response, whether they extend to responses to other viruses, and whether they are associated with the presence or absence of immunologic control.  相似文献   

3.
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.  相似文献   

4.
The stages of development of human antigen-specific CD4+ T cells responding to viral infection and their differentiation into long-term memory cells are not well understood. The inoculation of healthy adults with vaccinia virus presents an opportunity to study these events intensively. Between days 11 and 14 postinoculation, there was a peak of proliferating CCR5+CD38+++ CD4+ effector cells which contained the cytotoxic granule marker T-cell intracellular antigen 1 and included gamma interferon (IFN-gamma)-producing vaccinia virus-specific CD4+ T cells. The majority of these initial vaccinia virus-specific CD4+ T cells were CD127+ and produced interleukin-2 (IL-2) but not CTLA-4 in response to restimulation in vitro. Between days 14 and 21, there was a switch from IFN-gamma and IL-2 coexpression to IL-2 production only, coinciding with a resting phenotype and an increased in vitro proliferation response. The early CCR5+CD38+++ vaccinia virus-specific CD4+ T cells were similar to our previous observations of human immunodeficiency virus (HIV)-specific CD4+ T cells in primary HIV type 1 (HIV-1) infection, but the vaccinia virus-specific cells expressed much more CD127 and IL-2 than we previously found in their HIV-specific counterparts. The current study provides important information on the differentiation of IL-2+ vaccinia virus-specific memory cells, allowing further study of antiviral effector CD4+ T cells in healthy adults and their dysfunction in HIV-1 infection.  相似文献   

5.
The ex vivo antiviral CD8(+) repertoires of 34 human immunodeficiency virus (HIV)-seropositive patients with various CD4(+) T-cell counts and virus loads were analyzed by gamma interferon enzyme-linked immunospot assay, using peptides derived from HIV type 1 and Epstein-Barr virus (EBV). Most patients recognized many HIV peptides, with markedly high frequencies, in association with all the HLA class I molecules tested. We found no correlation between the intensity of anti-HIV CD8(+) responses and the CD4(+) counts or virus load. In contrast, the polyclonality of anti-HIV CD8(+) responses was positively correlated with the CD4(+) counts. The anti-EBV responses were significantly less intense than the anti-HIV responses and were positively correlated with the CD4(+) counts. Longitudinal follow-up of several patients revealed the remarkable stability of the anti-HIV and anti-EBV CD8(+) responses in two patients with stable CD4(+) counts, while both antiviral responses decreased in two patients with obvious progression toward disease. Last, highly active antiretroviral therapy induced marked decreases in the number of anti-HIV CD8(+) T cells, while the anti-EBV responses increased. These findings emphasize the magnitude of the ex vivo HIV-specific CD8(+) responses at all stages of HIV infection and suggest that the CD8(+) hyperlymphocytosis commonly observed in HIV infection is driven mainly by virus replication, through intense, continuous activation of HIV-specific CD8(+) T cells until ultimate progression toward disease. Nevertheless, highly polyclonal anti-HIV CD8(+) responses may be associated with a better clinical status. Our data also suggest that a decrease of anti-EBV CD8(+) responses may occur with depletion of CD4(+) T cells, but this could be restored by highly active antiretroviral treatment.  相似文献   

6.
If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP), patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5) HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses.  相似文献   

7.
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.  相似文献   

8.
Gut-associated lymphoid tissue (GALT) is a significant but understudied lymphoid organ, harboring a majority of the body's total lymphocyte population. GALT is also an important portal of entry for human immunodeficiency virus (HIV), a major site of viral replication and CD4(+) T-cell depletion, and a frequent site of AIDS-related opportunistic infections and neoplasms. However, little is known about HIV-specific cell-mediated immune responses in GALT. Using lymphocytes isolated from rectal biopsies, we have determined the frequency and phenotype of HIV-specific CD8(+) T cells in human GALT. GALT CD8(+) T cells were predominantly CD45RO(+) and expressed CXCR4 and CCR5. In 10 clinically stable, chronically infected individuals, the frequency of HIV Gag (SL9)-specific CD8(+) T cells was increased in GALT relative to peripheral blood mononuclear cells by up to 4.6-fold, while that of cytomegalovirus (CMV)-specific CD8(+) T cells was significantly reduced (P = 0.012). Both HIV- and CMV-specific CD8(+) T cells in GALT expressed CCR5, but only HIV-specific CD8(+) T cells expressed alpha E beta 7 integrin, suggesting that mucosal priming may account for their retention in GALT. Chronically infected individuals exhibited striking depletion of GALT CD4(+) T cells expressing CXCR4, CCR5, and alpha E beta 7 integrin, but CD4(+)/CD8(+) T-cell ratios in blood and GALT were similar. The percentage of GALT CD8(+) T cells expressing alpha E beta 7 was significantly decreased in infected individuals, suggesting that HIV infection may perturb lymphocyte retention in GALT. These studies demonstrate the feasibility of using tetramers to assess HIV-specific T cells in GALT and reveal that GALT is the site of an active CD8(+) T-cell response during chronic infection.  相似文献   

9.
To better understand the qualitative features of effective human immunodeficiency virus (HIV)-specific immunity, we examined the TCR clonal composition of CD8(+) T cells recognizing conserved HIV p24-derived epitopes in HLA-B*5701-positive long-term nonprogressors/elite controllers (LTNP/EC) and HLA-matched progressors. Both groups displayed oligoclonal HLA-B5701-restricted p24-specific CD8(+) T-cell responses with similar levels of diversity and few public clonotypes. Thus, HIV-specific CD8(+) T-cell responses in LTNP/EC are not differentiated from those of progressors on the basis of clonal diversity or TCR sharing.  相似文献   

10.
During HIV infection, CD8+ T cells lacking the costimulatory molecule CD28 increase in number and proportion. This accumulation is associated with disease activity and possibly with CD8+ T-cell dysfunction. In this study, CD8+CD28+ and CD8+CD28- T cells from 41 HIV-infected individuals at various stages of disease were compared in terms of HIV-specific cytotoxicity, TCR beta V repertoire diversity, and cytokine production. We found that the CD28 phenotype of anti-HIV CTL evolves in parallel with disease progression and disease activity. Absolute numbers of CD4+ T cells and CD4+/CD8+ T-cell ratios progressively decreased in 3 groups with an increasing prevalence of CD28- HIV-specific CTL. Conversely, HIV replication levels progressively increased in parallel with the prevalence of CD28- HIV-specific CTL. Repertoire diversity at the level of TCR beta V gene family expression was maintained at normal levels for both CD28+ and CD28- T cells at all stages of infection. Diversity at the level of junctional length polymorphism was more restricted in the CD8+CD28- T-cell population, but this difference remained relatively constant through different stages of infection. Both CD28+ and CD28- T cells produced IL-2 and IFN-gamma, regardless of disease stage and/or the predominant CD28 phenotype of anti-HIV CTL.  相似文献   

11.
Human immunodeficiency virus (HIV)-specific T-cell responses are thought to play a key role in viral load decline during primary infection and in determining the subsequent viral load set point. The requirements for this effect are unknown, partly because comprehensive analysis of total HIV-specific CD4(+) and CD8(+) T-cell responses to all HIV-encoded epitopes has not been accomplished. To assess these responses, we used cytokine flow cytometry and overlapping peptide pools encompassing all products of the HIV-1 genome to study total HIV-specific T-cell responses in 23 highly active antiretroviral therapy na?ve HIV-infected patients. HIV-specific CD8(+) T-cell responses were detectable in all patients, ranging between 1.6 and 18.4% of total CD8(+) T cells. HIV-specific CD4(+) T-cell responses were present in 21 of 23 patients, although the responses were lower (0.2 to 2.94%). Contrary to previous reports, a positive correlation was identified between the plasma viral load and the total HIV-, Env-, and Nef-specific CD8(+) T-cell frequency. No correlation was found either between viral load and total or Gag-specific CD4(+) T-cell response or between the frequency of HIV-specific CD4(+) and CD8(+) T cells. These results suggest that overall frequencies of HIV-specific T cells are not the sole determinant of immune-mediated protection in HIV-infection.  相似文献   

12.
Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3zeta, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3zeta down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3zeta-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3zeta(-). CD8 T cells with down-modulated CD3zeta also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR(+) CD62L(-)). After T-cell activation, CD3zeta-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor alpha-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3zeta is not reexpressed even after IL-2 exposure.  相似文献   

13.
Progressive human immunodeficiency virus type 1 (HIV-1) infection is often associated with high plasma virus load (pVL) and impaired CD8(+) T-cell function; in contrast, CD8(+) T cells remain polyfunctional in long-term nonprogressors. However, it is still unclear whether CD8(+) T-cell dysfunction is the cause or the consequence of high pVLs. Here, we conducted a longitudinal functional and phenotypic analysis of virus-specific CD8(+) T cells in a cohort of patients with chronic HIV-1 infection. During the initiation and maintenance of successful antiretroviral therapy (ART), we assessed whether the level of pVL was associated with the degree of CD8(+) T-cell dysfunction. Under viremic conditions, HIV-specific CD8(+) T cells were dysfunctional with respect to cytokine secretion (gamma interferon, interleukin-2 [IL-2], and tumor necrosis factor alpha), and their phenotype suggested limited potential for proliferation. During ART, cytokine secretion by HIV-specific CD8(+) T cells was gradually restored, IL-7Ralpha and CD28 expression increased dramatically, and PD-1 levels declined. Thus, prolonged ART-induced reduction of viral replication and, hence, presumably antigen exposure in vivo, allows a significant functional restoration of CD8(+) T cells with the appearance of polyfunctional cells. These findings indicate that the level of pVL as a surrogate for antigen load has a dominant influence on the phenotypic and functional profile of virus-specific CD8(+) T cells.  相似文献   

14.
IL-10-producing T cells have been shown to inhibit Ag-specific CD8+ T cell responses, and may play a role in the immune dysregulation observed in HIV-1 infection. We characterized the Gag-specific IL-10 responses by CD8+ T cells in HIV-1-positive volunteers from Uganda. HIV-specific IL-10 responses were detected in 32 of 61 (52.4%) antiretroviral naive and 2 of 15 (13.3%) volunteers with a complete virologic response on antiretroviral therapy (< 400 copies/ml). The frequency of HIV-specific IL-10-positive cells was significantly higher in volunteers with advanced disease (CD4+ T cell count <200 cells/mm3; p = 0.0004), and correlated positively with plasma HIV RNA (r = 0.43, p = 0.0004). Interestingly, the frequency of Gag-specific CD107a/b-, but not IFN-gamma-, positive cells was significantly lower in individuals with detectable IL-10-positive CD8+ T cells (p = 0.004). Gag-specific IL-10-positive CD8+ T cells demonstrated a pattern of surface memory marker expression that is distinct compared with CD107a/b- and IFN-gamma-positive CD8+ T cell populations (p < 0.0001). Our study describes a distinct population of IL-10-positive CD8+ T cells that may play a role in HIV-associated immune dysfunction.  相似文献   

15.
CD4(+) T-cell help is essential for effective immune responses to viruses. In human immunodeficiency virus (HIV) infection, CD4(+) T cells specific for HIV are infected by the virus at higher frequencies than other memory CD4(+) T cells. Here, we demonstrate that HIV-specific CD4(+) T cells are barely detectable in most infected individuals and that the corresponding CD4(+) T cells exhibit an immature phenotype compared to both cytomegalovirus (CMV)-specific CD4(+) T cells and other memory CD4(+) T cells. However, in two individuals, we observed a rare and diametrically opposed pattern in which HIV-specific CD4(+) T-cell populations of large magnitude exhibited a terminally differentiated immunophenotype; these cells were not preferentially infected in vivo. Clonotypic analysis revealed that the HIV-specific CD4(+) T cells from these individuals were cross-reactive with CMV. Thus, preferential infection can be circumvented in the presence of cross-reactive CD4(+) T cells driven to maturity by coinfecting viral antigens, and this physical proximity rather than activation status per se is an important determinant of preferential infection based on antigen specificity. These data demonstrate that preferential infection reduces the life span of HIV-specific CD4(+) T cells in vivo and thereby compromises the generation of effective immune responses to the virus itself; further, this central feature in the pathophysiology of HIV infection can be influenced by the cross-reactivity of responding CD4(+) T cells.  相似文献   

16.
HIV-specific CD8 T cell responses are defective in chronic HIV infection. In this study, we report that costimulation with either CD137L (4-1BBL) or CD80 (B7.1) enhanced the Ag-specific expansion and acquisition of effector function by HIV-specific memory CD8 T cells. Ag-specific T cells from recently infected donors showed maximal expansion with single costimulatory molecules. Dual costimulation of T cells from recently infected donors or from healthy donors responding to influenza epitopes led to enhanced responses when the accumulation of cytokines was measured. However, accumulation of regulatory cytokines, particularly IFN-gamma, led to inhibition of further Ag-specific CD8 T cell expansion in the cultures. This inhibition was relieved by neutralization of IFN-gamma or of IFN-gamma, TNF, and IL-10. Thus, strong costimulation of T cells in vitro can lead to induction of regulatory cytokines at levels that limit further T cell expansion. In marked contrast, T cells from long-term (>4 years) infected HIV+ donors exhibited reduced Ag-specific CD8 T cell expansion, reduced CD4 T cell responses, and minimal cytokine accumulation. Dual costimulation with both 4-1BBL and B7.1 enhanced responses of T cells from long-term infected subjects to a level similar to that obtained with T cells from early in HIV infection. Experiments with purified CD8 T cells showed that B7.1 and 4-1BBL could act directly and synergistically on CD8 T cells. Taken together, these data suggest that 4-1BBL and B7.1 have additive or synergistic effects on HIV-specific CD8 T cell responses and represent a promising combination for therapeutic vaccination for HIV.  相似文献   

17.
Although mouse studies have demonstrated the presence of an effector memory population in nonlymphoid tissues, the phenotype of human CD8(+) T cells present in such compartments has not been characterized. Because of the relatively large number of CD8(+) T cells present in breast milk, we were able to characterize the phenotype of this cell population in HIV-infected and uninfected lactating women. CMV, influenza virus, EBV, and HIV-specific CD8(+) T cells as measured by the IFN-gamma ELISPOT and MHC class I tetramer staining were all present at greater frequencies in breast milk as compared with blood. Furthermore, a greater percentage of the breast milk CD8(+) T cells expressed the intestinal homing receptor, CD103, and the mucosal homing receptor CCR9. Breast milk T cells were predominantly CD45RO(+)HLADR(+) and expressed low levels of CD45RA, CD62L, and CCR7 consistent with an effector memory population. Conversely, T cells derived from blood were mainly characterized as central memory cells (CCR7(+)CD62L(+)). These results demonstrate a population of extralymphoid CD8(+) T cells with an effector memory phenotype in humans, which could contribute to enhanced local virologic control and the relative lack of HIV transmission via this route.  相似文献   

18.
Immune control of human immunodeficiency virus (HIV) is not restored by highly active antiretroviral therapies (HAART) during chronic infection. We examined the capacity of repeated structured therapeutic interruptions (STI) to restore HIV-specific CD4 and CD8 T-cell responses that controlled virus production. Eleven STI (median duration, 7 days; ranges, 4 to 24 days) were performed in three chronically HIV-infected patients with CD4 counts above 400/mm(3) and less than 200 HIV RNA copies/ml after 18 to 21 months of HAART; treatment resumed after 1 week or when virus became detectable. HIV-specific T-cell responses were analyzed by proliferation, gamma interferon (IFN-gamma) production, and enzyme-linked immunospot assays. Seven virus rebounds were observed (median, 4,712 HIV-1 RNA copies/ml) with a median of 7 days during which CD4 and CD8 counts did not significantly change. After treatment resumed, the viral load returned below 200 copies/ml within 3 weeks. Significant CD4 T-cell proliferation and IFN-gamma production against HIV p24 appeared simultaneously with or even before the virus rebounds in all patients. These CD4 responses lasted for less than 3 weeks and disappeared before therapeutic control of the virus had occurred. Increases in the numbers of HIV-specific CD8 T cells were delayed compared to changes in HIV-specific CD4 T-cell responses. No delay or increase in virus doubling time was observed after repeated STI. Iterative reexposure to HIV during short STI in chronically infected patients only transiently mobilized HIV-specific CD4 T1-helper cells, which might be rapidly altered by virus replication. Such kinetics might explain the failure at delaying subsequent virus rebounds and raises concerns about strategies based on STI to restore durable HIV-specific T-cell responses in chronic HIV infection.  相似文献   

19.
In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared it with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/ NYVAC-C vaccine regimen. Smallpox-specific CD4 T-cell responses were present in the blood of 52% of the subjects studied, while smallpox-specific CD8 T cells were rarely detected (12%). With one exception, smallpox-specific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed α4β7 integrins and the HIV coreceptor CCR5. These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and the depletion of CD4 T cells.  相似文献   

20.
Chronic infection with the HIV results in poor HIV-specific CD4 T cell proliferation, but more recent analyses using intracellular cytokine staining demonstrated that IFN-gamma-producing, HIV-specific CD4 T cells can be detected for years in HIV-infected subjects. Because it is not known whether the majority of HIV-specific T cells are lost or become dysfunctional, we examined the kinetics of the T cell response over an extended period of time using a panel of 10 HLA-DR tetramers loaded with HIV p24 peptides. Tetramer+ CD4 T cells were present at a relatively high frequency during acute infection, but the size of these populations substantially contracted following suppression of viral replication. Short-term cessation of antiretroviral therapy resulted in a burst of viral replication and concomitant expansion of tetramer+ CD4 T cells, and these populations again contracted following reinitiation of therapy. The kinetics with which these cell populations contracted were characteristic of effector T cells, a conclusion that was supported by their phenotypic (CCR7-CD45RA-) and functional properties (IFN-gamma+). Continued high-level viremia resulted in the physical loss of the majority of tetramer+ CD4 T cells, and the decline of HIV p24-specific CD4 T cells occurred more rapidly and was more substantial than the reduction of total CD4 T cell numbers. We conclude that the population of HIV p24-specific CD4 T cells is initially responsive to changes in the levels of viral Ags, but that the majority of these cells are lost in a setting of chronic viremia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号