首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Prion diseases are characterised at autopsy by neuronal loss and accumulation of amorphous protein aggregates and/or amyloid fibrils in the brains of humans and animals. These protein deposits result from the conversion of the cellular, mainly alpha-helical prion protein (PrP(C)) to the beta-sheet-rich isoform (PrP(Sc)). Although the pathogenic mechanism of prion diseases is not fully understood, it appears that protein aggregation is itself neurotoxic and not the product of cell death. The precise nature of the neurotoxic species and mechanism of cell death are yet to be determined, although recent studies with other amyloidogenic proteins suggest that ordered pre-fibrillar or oligomeric forms may be responsible for cellular dysfunction. In this study we have refolded recombinant prion protein (rPrP) to two distinct forms rich in beta-sheet structure with an intact disulphide bond. Here we report on the structural properties of globular aggregates and pre-fibrils of rPrP and show that both states are toxic to neuronal cells in culture. We show that exogenous rPrP aggregates are internalised by neuronal cells and found in the cytoplasm. We also measured the changes in electrophysiological properties of cultured neuronal cells on exposure to exogenous prion aggregates and discuss the implications of these findings.  相似文献   

2.
The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance.  相似文献   

3.
《朊病毒》2013,7(3):261-275
The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance.  相似文献   

4.
Yu S  Yin S  Li C  Wong P  Chang B  Xiao F  Kang SC  Yan H  Xiao G  Tien P  Sy MS 《The Biochemical journal》2007,403(2):343-351
Mutation in the prion gene, PRNP, accounts for approx. 10-15% of human prion diseases. However, little is known about the mechanisms by which a mutant prion protein (PrP) causes disease. We compared the biochemical properties of a wild-type human prion protein, rPrP(C) (recombinant wild-type PrP), which has five octapeptide-repeats, with two recombinant human prion proteins with insertion mutations, one with three more octapeptide repeats, rPrP(8OR), and the other with five more octapeptide repeats, rPrP(10OR). We found that the insertion mutant proteins are more prone to aggregate, and the degree and kinetics of aggregation are proportional to the number of inserts. The octapeptide-repeat and alpha-helix 1 regions are important in aggregate formation, because aggregation is inhibited with monoclonal antibodies that are specific for epitopes in these regions. We also showed that a small amount of mutant protein could enhance the formation of mixed aggregates that are composed of mutant protein and wild-type rPrP(C). Accordingly, rPrP(10OR) is also more efficient in promoting the aggregation of rPrP(C) than rPrP(8OR). These findings provide a biochemical explanation for the clinical observations that the severity of the disease in patients with insertion mutations is proportional to the number of inserts, and thus have implications for the pathogenesis of inherited human prion disease.  相似文献   

5.
阿尔采末病(Alzheimer's disease,AD)是一种以老年斑、神经纤维缠结、突触密度减少和神经元丢失为主要病理改变的神经退行性疾病.目前对该病发病机制解释普遍接受的是淀粉样沉淀假说.而最新研究发现,早在β淀粉样多肽(Aβ)沉积和神经纤维缠结出现之前就有另一种病理改变,即轴突肿胀的出现.并且这一病理改变是由轴浆运输障碍引起的,最终可以导致Aβ沉积、突触功能障碍等其它AD相关的病理变化.据此推测,各种原因引起的轴浆运输障碍导致了AD的发病.本文通过介绍轴浆运输假说及其相关实验依据,对近年来AD发病机制的最新研究进展和尚待解决的问题作一综述.  相似文献   

6.
We compared the biochemical properties of a wild type recombinant normal human cellular prion protein, rPrP(c), with a recombinant mutant human prion protein that has three additional octapeptide repeats, rPrP(8OR). Monoclonal antibodies that are specific for the N terminus of rPrP(c) react much better with rPrP(8OR) than rPrP(c), suggesting that the N terminus of rPrP(8OR) is more exposed and hence more available for antibody binding. The N terminus of PrP(c) contains a glycosaminoglycan binding motif. Accordingly, rPrP(8OR) also binds more glycosaminoglycan than rPrP(c). In addition, the divalent cation copper modulates the conformations of rPrP(c) and rPrP(8OR) differently. When compared with rPrP(c), rPrP(8OR) is also more susceptible to oxidative damage. Furthermore, the abnormalities associated with rPrP(8OR) are recapitulated, but even more profoundly, in another insertion mutant, which has five extra octapeptide repeats, rPrP(10OR). Therefore, insertion mutants appear to share common features, and the degree of abnormality is proportional to the number of insertions. Any of these anomalies may contribute to the pathogenesis of inherited human prion disease.  相似文献   

7.
The cytoskeleton forms the backbone of neuronal architecture, sustaining its form and size, subcellular compartments and cargo logistics. The synaptic cytoskeleton can be categorized in the microtubule-based core cytoskeleton and the cortical membrane skeleton. While central microtubules form the fundamental basis for the construction of elaborate neuronal processes, including axons and synapses, cortical actin filaments are generally considered to function as mediators of synapse dynamics and plasticity. More recently, the submembranous network of spectrin and ankyrin molecules has been involved in the regulation of synaptic stability and maintenance. Disruption of the synaptic cytoskeleton primarily affects the stability and maturation of synapses but also secondarily disturbs neuronal communication. Consequently, a variety of inherited diseases are accompanied by cytoskeletal malfunctions, including spastic paraplegias, spinocerebellar ataxias, and mental retardation. Since the primary reasons for many of these diseases are still unknown model organisms with a conserved repertoire of cytoskeletal elements help to understand the underlying biological mechanisms. The astonishing technical as well as genetic accessibility of synapses in Drosophila has shown that loss of the cytoskeletal architecture leads to axonal transport defects, synaptic maturation deficits, and retraction of synaptic boutons, before synaptic terminals finally detach from their target cells, suggesting that similar processes could be involved in human neuronal diseases.  相似文献   

8.
Yin S  Fan X  Yu S  Li C  Sy MS 《The Journal of biological chemistry》2008,283(37):25446-25454
Recombinant prion protein, rPrP, binds DNA. Both the KKRPK motif and the octapeptide repeat region of rPrP are essential for maximal binding. rPrP with pathogenic insertional mutations binds more DNA than wild-type rPrP. DNA promotes the aggregation of rPrP and protects its N terminus from proteinase K digestion. When rPrP is mixed with an expression plasmid and Ca(2+), the rPrP.DNA complex is taken up by mammalian cells leading to gene expression. In the presence of Ca(2+), rPrP by itself is also taken up by cells in a temperature- and pinocytosis-dependent manner. Cells do not take up rPrP(DeltaKKRPK), which lacks the KKRPK motif. Thus, rPrP is the carrier for DNA and the KKRPK motif is essential for its uptake. When mixed with DNA, a pentapeptide KKRPK, but not KKKKK, is sufficient for DNA internalization and expression. In contrast, whereas the normal cellular prion protein, PrP(C), on the cell surface can also internalize DNA, the imported DNA is not expressed. These findings may have relevance to the normal functions of PrP(C) and the pathogenic mechanisms of human prion disease.  相似文献   

9.
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding that of neuronal cell bodies. In Alzheimer, Huntington, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death ‘routines’ of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.Key words: neurodegeneration, prion, synaptic dysfunction, behavior, neurophysiology  相似文献   

10.
《朊病毒》2013,7(4):195-201
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding the loss of neuronal cell bodies. In Alzheimer's, Huntington's, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.  相似文献   

11.
Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.  相似文献   

12.
In recent studies, the amyloid fibrils produced in vitro from recombinant prion protein encompassing residues 89-230 (rPrP 89-230) were shown to produce transmissible form of prion disease in transgenic mice (Legname et al., (2004) Science 305, 673-676). Long incubation time observed upon inoculation of the amyloid fibrils, however, suggests that the fibrils generated in vitro have low infectivity titers. These results emphasize the need to define optimal conditions for prion conversion in vitro, under which high levels of infectivity can be generated in a cell-free system. Because copper(II) has been implicated in normal and pathological functions of the prion protein, here we investigated the effect of Cu(2+) on cell-free conversion of recombinant PrP. Our results show that at pH 7.2 and at micromolar concentrations, Cu(2+) inhibited conversion of full-length recombinant PrP (rPrP 23-230) into amyloid fibrils. This effect was most pronounced for Cu(2+), and less so for Zn(2+), while Mn(2+) had no effect on the conversion. Cu(2+)-dependent inhibition of the amyloid formation was less effective at pH 6.0, at which rPrP 23-230 displays lower Cu(2+)-binding capacity. Using rPrP 89-230, we found that Cu(2+)-dependent inhibition occurred even in the absence of octarepeat region; however, it was less effective. Our further studies indicated that Cu(2+) inhibited conversion by stabilizing a nonamyloidogenic PK-resistant form of alpha-rPrP. Remarkably, Cu(2+) also had a profound effect on preformed amyloid fibrils. When added to the fibrils, Cu(2+) induced long-range coiling of individual fibrils and enhanced their PK-resistance. It, however, produced only minor changes in their secondary structures. In addition, Cu(2+) induced further aggregation of the amyloid fibrils into large clumps, presumably, through interfibrillar coordination of copper ions by octarepeats. Taken together, our studies suggest that the role of Cu(2+) in the pathogenesis of prion diseases is complex. Because Cu(2+) may inhibit prion replication, while at the same time stabilize disease-specific isoform against proteolytic clearance, the final outcome of copper-induced effect on progression of prion disease may not be straightforward.  相似文献   

13.
14.
In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer''s, Parkinson''s and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic terminals in these disorders. However, very little is known about the processes that link the presence of a misfolded protein to the degeneration of synapses. It has been suggested that the process follows a simple linear sequence in which terminals that become dysfunctional are targeted for death, but there is also evidence that high levels of activity can speed up degeneration. To dissect the role of activity in synapse degeneration, we infused the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of mice with prion disease and assessed synapse loss at the electron microscopy level. We found that injection of BoNT/A in naïve mice caused a significant enlargement of excitatory presynaptic terminals in the hippocampus, indicating transmission impairment. Long-lasting blockade of activity by BoNT/A caused only minimal synaptic pathology and no significant activation of microglia. In mice with prion disease infused with BoNT/A, rates of synaptic degeneration were indistinguishable from those observed in control diseased mice. We conclude that silencing synaptic activity neither prevents nor enhances the degree of synapse degeneration in prion disease. These results challenge the idea that dysfunction of synaptic terminals dictates their elimination during prion-induced neurodegeneration.  相似文献   

15.
Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.  相似文献   

16.
17.
Yu S  Yin S  Pham N  Wong P  Kang SC  Petersen RB  Li C  Sy MS 《The FEBS journal》2008,275(22):5564-5575
Aggregation of the normal cellular prion protein, PrP, is important in the pathogenesis of prion disease. PrP binds glycosaminoglycan (GAG) and divalent cations, such as Cu(2+) and Zn(2+). Here, we report our findings that GAG and Cu(2+) promote the aggregation of recombinant human PrP (rPrP). The normal cellular prion protein has five octapeptide repeats. In the presence of either GAG or Cu(2+), mutant rPrPs with eight or ten octapeptide repeats are more aggregation prone, exhibit faster kinetics and form larger aggregates than wild-type PrP. When the GAG-binding motif, KKRPK, is deleted the effect of GAG but not that of Cu(2+) is abolished. By contrast, when the Cu(2+)-binding motif, the octapeptide-repeat region, is deleted, neither GAG nor Cu(2+) is able to promote aggregation. Therefore, the octapeptide-repeat region is critical in the aggregation of rPrP, irrespective of the promoting ligand. Furthermore, aggregation of rPrP in the presence of GAG is blocked with anti-PrP mAbs, whereas none of the tested anti-PrP mAbs block Cu(2+)-promoted aggregation. However, a mAb that is specific for an epitope at the N-terminus enhances aggregation in the presence of either GAG or Cu(2+). Therefore, although binding of either GAG or Cu(2+) promotes the aggregation of rPrP, their aggregation processes are different, suggesting multiple pathways of rPrP aggregation.  相似文献   

18.
The serotonergic system has been hypothesized to play an important role in prion diseases. Specifically, hyperactivity of the serotonergic system in prion diseases is suggested by an increase in the turnover rate of the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in human and experimental prion diseases. The 5-HT transporter (5-HTT) determines the duration of serotonergic neurotransmission by way of reuptake of 5-HT from the extracellular space. 5-HTT availability is reduced in brains of patients with the human prion disease familial fatal insomnia. To further clarify a possible role of the 5-HTT in prion diseases we investigated whether mice lacking the 5-HTT display an altered susceptibility to experimental scrapie infection. Surprisingly, 5-HTT knockout mice developed mouse scrapie in a time course similar to wildtype control mice with accumulation of the pathological prion protein, PrP(Sc) and with typical pathological hallmarks of the disease. These findings argue against a major role of the 5-HTT in the pathogenesis of prion diseases in mice.  相似文献   

19.
Previous studies identified several single-point mutants of the prion protein that displayed dominant-negative effects on prion replication. The dominant-negative effect was assumed to be mediated by protein X, an as-yet-unknown cellular cofactor that is believed to be essential for prion replication. To gain insight into the mechanism that underlies the dominant-negative phenomena, we evaluated the effect of the Q218K variant of full-length recombinant prion protein (Q218K rPrP), one of the dominant-negative mutants, on cell-free polymerization of wild-type rPrP into amyloid fibrils. We found that both Q218K and wild-type (WT) rPrPs were incorporated into fibrils when incubated as a mixture; however, the yield of polymerization was substantially decreased in the presence of Q218K rPrP. Furthermore, in contrast to fibrils produced from WT rPrP, the fibrils generated in the mixture of WT and Q218K rPrPs did not acquire the proteinase K-resistant core of 16 kDa that was shown previously to encompass residues 97-230 and was similar to that of PrP(Sc). Our studies demonstrate that the Q218K variant exhibits the dominant-negative effect in cell-free conversion in the absence of protein X, and that this effect is, presumably, mediated by physical interaction between Q218K and WT rPrP during the polymerization process.  相似文献   

20.
Prion diseases are fatal neurodegenerative diseases of the CNS that are associated with the accumulation of misfolded cellular prion protein. There are several different strains of prion disease defined by different patterns of tissue vacuolation in the brain and disease time course, but features of neurodegeneration in these strains have not been extensively studied. Our previous studies using the prion strains ME7, 79A and 22L showed that infected mice developed behavioural deficits in the same sequence and temporal pattern despite divergent end-stage neuropathology. Here the objective was to address the hypothesis that synaptic loss would occur early in the disease in all three strains, would precede neuronal death and would be associated with the early behavioural deficits. C57BL/6 mice inoculated with ME7, 79A, or 22L-infected brain homogenates were behaviourally assessed on species typical behaviours previously shown to change during progression and euthanised when all three strains showed statistically significant impairment on these tasks. A decrease in labelling with the presynaptic marker synaptophysin was observed in the stratum radiatum of the hippocampus in all three strains, when compared to control animals. Negligible cell death was seen by TUNEL at this time point. Astrocyte and microglial activation and protease resistant prion protein (PrPSc) deposition were assessed in multiple brain regions and showed some strain specificity but also strongly overlapping patterns. This study shows that despite distinct pathology, multiple strains lead to early synaptic degeneration in the hippocampus, associated with similar behavioural deficits and supports the idea that the initiation of synaptic loss is a primary target of the misfolded prion agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号