首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.  相似文献   

2.
The import of metals, iron in particular, into mitochondria is poorly understood. Iron in mitochondria is required for the biosynthesis of heme and various iron-sulfur proteins. We have developed an in vitro assay to follow the uptake of iron into isolated yeast mitochondria. By measuring the incorporation of iron into porphyrin by ferrochelatase in the matrix, we were able to define the mechanism of iron import. Iron uptake is driven energetically by a membrane potential across the inner membrane but does not require ATP. Only reduced iron is functional in generating heme. Iron cannot be preloaded in the mitochondrial matrix but rather has to be transported across the inner membrane simultaneously with the synthesis of heme, suggesting that ferrochelatase receives iron directly from the inner membrane. Transport of iron is inhibited by manganese but not by zinc, nickel, and copper ions, explaining why in vivo these ions are not incorporated into porphyrin. The inner membrane proteins Mmt1p and Mmt2p proposed to be involved in mitochondrial iron movement are not required for the supply of ferrochelatase with iron. Iron transport can be reconstituted efficiently in a membrane potential-dependent fashion in proteoliposomes that were formed from a detergent extract of mitochondria. Our biochemical analysis of iron import into yeast mitochondria provides the basis for the identification of components involved in transport.  相似文献   

3.
Glutathione (GSH) is transported into renal mitochondria by the dicarboxylate (DIC; Slc25a10) and 2-oxoglutarate carriers (OGC; Slc25a11). To determine whether these carriers function similarly in liver mitochondria, we assessed the effect of competition with specific substrates or inhibitors on GSH uptake in isolated rat liver mitochondria. GSH uptake was uniphasic, independent of ATP hydrolysis, and exhibited Km and Vmax values of 4.08 mM and 3.06 nmol/min per mg protein, respectively. Incubation with butylmalonate and phenylsuccinate inhibited GSH uptake by 45-50%, although the individual inhibitors had no effect, suggesting in rat liver mitochondria, the DIC and OGC are only partially responsible for GSH uptake. H4IIE cells, a rat hepatoma cell line, were stably transfected with the cDNA for the OGC, and exhibited increased uptake of GSH and 2-oxoglutarate and were protected from cytotoxicity induced by H2O2, methyl vinyl ketone, or cisplatin, demonstrating the protective function of increased mitochondrial GSH transport in the liver.  相似文献   

4.
Glutamine transport into rat brain synaptic and non-synaptic mitochondria has been monitored by the uptake of [3H]glutamine and by mitochondrial swelling. The concentration of glutamate in brain mitochondria is calculated to be high, 5–10 mM, indicating that phosphate activated glutaminase localized inside the mitochondria is likely to be dormant and the glutamine taken up not hydrolyzed. The uptake of [3H]glutamine is largely stereospecific. It is inhibited by glutamate, asparagine, aspartate, 2-oxoglutarate and succinate. Glutamate inhibits this uptake into synaptic and non-synaptic mitochondria by 95 and 85%, respectively. The inhibition by glutamate, asparagine, aspartate and succinate can be explained by binding to an inhibitory site whereas the inhibition by 2-oxoglutarate is counteracted by aminooxyacetic acid, which indicates that it is dependent on transamination. The glutamine-induced swelling, a measure of a very low affinity uptake, is inhibited by glutamate at a glutamine concentration of 100 mM, but this inhibition is abolished when the glutamine concentration is raised to 200 mM. This suggests that the very low affinity glutamine uptake is competitively inhibited by glutamate. Furthermore, glutamine-induced swelling is inhibited by 2-oxoglutarate, succinate and malate, similarly to that of the [3H]glutamine uptake. The properties of the mitochondrial glutamine transport are not identical with those of a recently purified renal glutamine carrier.  相似文献   

5.
In this paper we present a study on the intracellular localisation and the efficiency of cell photoinactivation of a series of derivatives of 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphine (C1), whose degree of lipophilicity was varied through replacement of one methyl group with an alkyl chain of various length. Human HT1080 fibrosarcoma cells exposed to the various C1 derivatives (0.25 microM) for 24 h and irradiated with increasing doses of red-light (0.45-27 J/cm2) were inactivated with different efficiencies. The efficiency of cell photoinactivation increased with the increasing length of the hydrocarbon tail and lipophilicity and correlated with the efficiency of the porphyrin accumulation into the cells. Despite the presence of positive charges, these porphyrins did localise rather selectively in lysosomes while mitochondrial localisation was not evident, as demonstrated by fluorescence microscopy studies. Studies on isolated mitochondria provided evidence that the porphyrin uptake and distribution in these organelles were not modulated by the transmembrane potential but were exclusively controlled by partitioning phenomena which might have prevented mitochondria localization in whole cells. Our findings demonstrated that these porphyrins entered the cells through the endocytotic pathway and were transported to lysosomes whose pH increased rapidly upon irradiation. Lysosomal damage did not cause any intracellular redistribution of the porphyrin and represented the primary event causing cell death, very likely via necrosis.  相似文献   

6.
Alterations of the chemical structure of protoporphyrin IX markedly altered the activation of soluble guanylate cyclase purified from bovine lung. Hydrophobic side chains at positions 2 and 4 and vicinal propionic acid residues at positions 6 and 7 of the porphyrin ring (protoporphyrin IX, mesoporphyrin IX) were essential for maximal enzyme activation (Ka = 7-8 nM; Vmax = 6-8 mumol of cGMP/min/mg). Substitution of hydrophobic with polar groups (hematoporphyrin IX, coproporphyrin III), or with hydrogen atoms ( deuteroporphyrin IX), and methylation of propionate residues resulted in decreased enzyme stimulation. Stimulatory porphyrins increased the Vmax and the apparent affinities of enzyme for MgGTP and uncomplexed Mg2+. An open central core in the porphyrin ring was essential for enzyme activation. The pyrrolic nitrogen adduct, N-phenylprotoporphyrin IX, was inhibitory and competitive with protoporphyrin IX (KI = 73 nM). Similarly, metalloporphyrins inhibited enzymatic activity and ferro-protoporphyrin IX (KI = 350 nM), zinc-protoporphyrin IX (KI = 50 nM) and manganese-protoporphyrin IX (KI = 9 nM) were competitive with protoporphyrin IX. Inhibitory porphyrins and metalloporphyrins also prevented enzyme activation by S-nitroso-N- acetylpenicillamine and NO. Guanylate cyclase reconstituted with such porphyrins required higher concentrations of protoporphyrin IX for further activation and were not activated by NO. Thus, porphyrins, metalloporphyrins, and NO appeared to interact at a common binding site on guanylate cyclase. This common site is likely that which normally binds heme and, therefore, NO-heme when the heme-containing enzyme is exposed to NO. Thus, NO and nitroso compounds may react with enzyme-bound heme to generate a modified porphyrin which structurally resembles protoporphyrin IX in its interaction with guanylate cyclase.  相似文献   

7.
Although most cellular glutathione (GSH) is in the cytoplasm, a distinctly regulated pool is present in mitochondria. Inasmuch as GSH synthesis is primarily restricted to the cytoplasm, the mitochondrial pool must derive from transport of cytoplasmic GSH across the mitochondrial inner membrane. Early studies in liver mitochondria primarily focused on the relationship between GSH status and membrane permeability and energetics. Because GSH is an anion at physiological pH, this suggested that some of the organic anion carriers present in the inner membrane could function in GSH transport. Indeed, studies by Lash and colleagues in isolated mitochondria from rat kidney showed that most of the transport (>80%) in that tissue could be accounted for by function of the dicarboxylate carrier (DIC, Slc25a10) and the oxoglutarate carrier (OGC, Slc25a11), which mediate electroneutral exchange of dicarboxylates for inorganic phosphate and 2-oxoglutarate for other dicarboxylates, respectively. The identity and function of specific carrier proteins in other tissues is less certain, although the OGC is expressed in heart, liver, and brain and the DIC is expressed in liver and kidney. An additional carrier that transports 2-oxoglutarate, the oxodicarboxylate or oxoadipate carrier (ODC; Slc25a21), has been described in rat and human liver and its expression has a wide tissue distribution, although its potential function in GSH transport has not been investigated. Overexpression of the cDNA for the DIC and OGC in a renal proximal tubule-derived cell line, NRK-52E cells, showed that enhanced carrier expression and activity protects against oxidative stress and chemically induced apoptosis. This has implications for development of novel therapeutic approaches for treatment of human diseases and pathological states. Several conditions, such as alcoholic liver disease, cirrhosis or other chronic biliary obstructive diseases, and diabetic nephropathy, are associated with depletion or oxidation of the mitochondrial GSH pool in liver or kidney.  相似文献   

8.
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.  相似文献   

9.
We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-x(L), respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell.  相似文献   

10.
The porphyrin requirements for growth recovery of Porphyromonas gingivalis in heme-depleted cultures are investigated. In addition to physiologically relevant sources of heme, growth recovery is stimulated by a number of noniron porphyrins. These data demonstrate that, as for Haemophilus influenzae, reliance on captured iron and on exogenous porphyrin is manifest as an absolute growth requirement for heme. A number of outer membrane proteins including some gingipains contain the hemoglobin receptor (HA2) domain. In cell surface extracts, polypeptides derived from HA2-containing proteins predominated in hemoglobin binding. The in vitro porphyrin-binding properties of a recombinant HA2 domain were investigated and found to be iron independent. Porphyrins that differ from protoporphyrin IX in only the vinyl aspect of the tetrapyrrole ring show comparable effects in competing with hemoglobin for HA2 and facilitate growth recovery. For some porphyrins which differ from protoporphyrin IX at both propionic acid side chains, the modification is detrimental in both these assays. Correlations of porphyrin competition and growth recovery imply that the HA2 domain acts as a high-affinity hemophore at the cell surface to capture porphyrin from hemoglobin. While some proteins involved with heme capture bind directly to the iron center, the HA2 domain of P. gingivalis recognizes heme by a mechanism that is solely porphyrin mediated.  相似文献   

11.
The activity of highly purified L-serine:glyoxylate aminotransferase (SGAT, EC 2.6.1.45) from rye seedlings was inhibited competitively by 5-aminolevulinate (ALA, Ki = 5 mM) SGAT was activated by hematin. Protoporphyrin IX and hematin inhibited irreversibly the activity of highly purified glutamate:glyoxylate aminotransferase (GGAT, EC 2.6.1.2) from rye seedlings. SGAT was found to catalyse transamination between ALA and hydroxypyruvate, whereas GGAT that between ALA and 2-oxoglutarate or pyruvate. It is suggested that SGAT is involved in the process of degradation of the excess ALA which has not been incorporated into porphyrin compounds.  相似文献   

12.
ABCB6, a member of the adenosine triphosphate-binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells. Knock-down studies demonstrate that ABCB6 function is not required for de novo heme biosynthesis in differentiating K562 cells, excluding this ABC transporter as a key regulator of porphyrin synthesis. We confirm the mitochondrial localization of ABCB7, ABCB8 and ABCB10, suggesting that only three ABC transporters should be classified as mitochondrial proteins. Taken together, our results challenge the current paradigm linking the expression and function of ABCB6 to mitochondria.  相似文献   

13.
Porphyromonas gingivalis acquires heme through an outer-membrane heme transporter HmuR and heme-binding hemophore-like lipoprotein HmuY. Here, we compare binding of iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) to HmuY with that of iron(III) protoporphyrin IX (protoheme) and protoporphyrin IX (PPIX) using spectroscopic methods. In contrast to PPIX, mesoheme and deuteroheme enter the HmuY heme cavity and are coordinated by His134 and His166 residues in a fully analogous way to protoheme binding. However, in the case of deuteroheme two forms of HmuY–iron porphyrin complex were observed differing by a 180° rotation of porphyrin about the α-γ-meso-carbon axis. Since the use of porphyrins either as active photosensitizers or in combination with antibiotics may have therapeutic value for controlling bacterial growth in vivo, it is important to compare the binding of heme derivatives to HmuY.  相似文献   

14.
Phosphorescent probes are described that are quenchable by dioxygen and that partition into membranes. These probes are derivatives of porphyrin, in which the central metal, either zinc or palladium, induces intersystem crossing to enhance the triplet yield. The location of the probe in a suspension of membranes depends upon the charge distribution of side groups on the porphyrins. Probes that partition into the membrane are sensitive to phase transitions in lecithin artificial membranes. In the mitochondria these membrane probes are within transfer distance from tryptophans in membrane proteins. Although absolute concentrations of oxygen in membranes cannot be determined by this method, by comparing the oxygen dependence of a probe in the aqueous phase with that in the membrane phase under actively respiring and inhibited conditions, it is possible to examine the extent of O2 depletion at the mitochondrial surface. We show that at oxygen tensions of 0.2 microM and higher these gradients are insignificant at usual oxygen consumption rates of mitochondria.  相似文献   

15.
1. Iron protoporphyrin IX was required for the growth of H. influenzae. It could be replaced by protoporphyrin IX. When grown on protoporphyrin evidence was obtained for the presence of Fe porphyrin in the organism. It was concluded that the organism could insert iron into the protoporphyrin ring. 2. In the smooth strains, other porphyrins containing no iron such as deutero-, hemato-, meso-, and coproporphyrins could not replace protoporphyrin for growth. Since protoporphyrin has two vinyl groups which other porphyrins lack, it was concluded that the two vinyl groups were essential for growth. 3. When porphyrins lacking vinyl groups were converted chemically into iron porphyrins and then supplied to the organisms it was found that these iron porphyrins supported growth. It was concluded that the "smooth" organisms were able to insert iron only into the porphyrin containing the vinyl groups; i.e., protoporphyrin. One function of the vinyl groups then was to permit iron to be inserted biologically into the porphyrin ring. 4. An anomalous behavior in the rough Turner strain was observed and discussed. This organism was able to insert iron into mesoporphyrin at low concentrations but was inhibited by this compound at higher concentrations. In all other reactions with the porphyrins this rough strain behaved in the same was as did the smooth strains. 5. All strains which were grown on iron porphyrins lacking vinyl groups could not reduce nitrate to nitrite. When grown on protoporphyrin or Fe protoporphyrin reduction of nitrate occurred. It was concluded that the nitrate-reducing mechanism required the presence of the vinyl groups either for its formation or function. 6. The porphyrins lacking iron and lacking vinyl groups inhibited the growth of H. influenzae on Fe protoporphyrin. The inhibition between a porphyrin and Fe protoporphyrin was a competitive one. It was suggested that the porphyrin inhibited the growth-promoting properties of Fe protoporphyrin by attaching on to a particular apoprotein, thus preventing the formation of a heme catalyst. Likewise, competition between two growth-promoting Fe porphyrins for apoenzymes could be shown to occur. 7. Protoporphyrin and Fe protoporphyrin supported growth. When their propionic acid side chains were esterified they no longer supported growth. It was suggested that the esterified carboxyl groups could not attach to the specific apoproteins to form the heme enzymes and so could not act to support growth. For the same reason the inhibitory action of porphyrins lacking vinyl groups could be prevented by esterifying their propionic acid groups.  相似文献   

16.
All-trans-retinoic acid (atRA), an activated metabolite of vitamin A, is incorporated covalently into proteins both invivo and invitro. AtRA reduced the transport activity of the oxoglutarate carrier (OGC) isolated from testes mitochondria to 58% of control via retinoylation reaction. Labeling of testes mitochondrial proteins with (3)HatRA demonstrated the binding of atRA to a 31.5 KDa protein. This protein was identified as OGC due to the competition for the labeling reaction with 2-oxoglutarate, the specific OGC substrate. The role of retinoylated proteins is currently being explored and here we have the first evidence that retinoic acids bind directly to OGC and inhibit its activity in rat testes mitochondria via retinoylation reaction. This study indicates the evidence of a specific interaction between atRA and OGC and establishes a novel mechanism for atRA action, which could influence the physiological biosynthesis of testosterone in situations such as retinoic acid treatment.  相似文献   

17.
We studied the properties of the permeability transition pore (PTP) in rat liver mitochondria and in mitoplasts retaining inner membrane ultrastructure and energy-linked functions. Like mitochondria, mitoplasts readily underwent a permeability transition following Ca(2+) uptake in a process that maintained sensitivity to cyclosporin A. On the other hand, major differences between mitochondria and mitoplasts emerged in PTP regulation by ligands of the outer membrane translocator protein of 18 kDa, TSPO, formerly known as the peripheral benzodiazepine receptor. Indeed, (i) in mitoplasts, the PTP could not be activated by photo-oxidation after treatment with dicarboxylic porphyrins endowed with protoporphyrin IX configuration, which bind TSPO in intact mitochondria; and (ii) mitoplasts became resistant to the PTP-inducing effects of N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide and of other selective ligands of TSPO. Thus, the permeability transition is an inner membrane event that is regulated by the outer membrane through specific interactions with TSPO.  相似文献   

18.
Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6(+/-)) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6(-/-) mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6(-/-) mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6(-/-) mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.  相似文献   

19.
The effects of hexachlorobenzene treatment and simultaneous iron-overload on the iron and porphyrin content of rat liver and rat liver mitochondria have been examined. In order to assess damages to the mitochondrial membrane occuring with these treatments, the content of malondialdehyde and selected functional properties of mitochondria were compared with those from control animals. Prolonged intake of hexachlorobenzene (8 weeks) resulted in a striking increased level of porphyrins together with a moderate increase in iron concentration. Simultaneous administration of hexachlorobenzene and iron-dextran caused the porphyrin level to reach 25% of the amount induced by hexachlorobenzene alone. The iron concentrations in liver as well as in liver mitochondria are also decreased under these conditions, as compared to the effect of iron-dextran. In contrast, the effects of hexachlorobenzene combined with iron-dextran on mitochondrial oxidative phosphorylation and malondialdehyde content are greater than those of either hexachlorobenzene or iron-dextran. These data suggest that porphyrin accumulation per se causes little deleterious effect and that both agents administered together act synergistically in causing damage to the mitochondrial membrane.  相似文献   

20.
Application of delta-aminolevulinic acid (ALA) results in the endogenous accumulation of protoporphyrin IX and is a useful approach in the photodynamic therapy (PDT) of cancers. To investigate the role of nitric oxide (NO) in the specific accumulation of protoporphyrin and ALA-induced PDT of cancerous cells, we transfected inducible-nitric oxide synthase (NOS2) cDNA into human embryonic kidney (HEK) 293T cells and examined the ALA-induced photo-damage as well as the accumulation of porphyrin in the cells. When the NOS2-expressing HEK293T cells were treated with ALA and then exposed to visible light, they became more sensitive to the light with accumulating porphyrins, as compared with the ALA-treated control cells. An increase in the generation of NO in transfected cells led to the accumulation of protoporphyrin with a concomitant decrease of ferrochelatase, the final step enzyme of heme biosynthesis. When mouse macrophage-like RAW264.7 cells were cultured with lipopolysaccharide and interferon-gamma, the expression of NOS2 was induced. The addition of ALA to these cells led to the accumulation of protoporphyrin and cell death upon exposure to light. The treatment of cells with an NOS inhibitor, NG-monomethyl-L-arginine acetate, resulted in the inhibition of protoporphyrin accumulation and cell death. The levels of mitochondrial ferrochelatase and rotenone-sensitive NADH dehydrogenase in the NOS2-induced cells decreased. These results indicated that the generation of NO augments the ALA-induced accumulation of protoporphyrin IX and subsequent photo-damage in cancerous cells by decreasing the levels of mitochondrial iron-containing enzymes. Based on the fact that the production of NO in cancerous cells is elevated, NO in the cells is responsible for susceptibility with ALA-induced PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号