首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
BXH-2 recombinant inbred mice spontaneously produce a B-tropic murine leukemia virus (MuLV) beginning early in life and have a high incidence of non-T-cell lymphomas. These traits are not characteristic of the progenitor strains (C57BL/6J and C3H/HeJ) or of 11 other BXH recombinant inbred strains. Since B-tropic virus expression may be causally related to the high incidence of lymphoma in this strain, we have analyzed the ecotropic MuLV DNA content of both normal and lymphomatous tissues of BXH-2 mice. Southern analysis and hybridization with an ecotropic MuLV DNA-specific probe showed that DNA of normal BXH-2 tissues contained both parental N-tropic MuLV proviruses but lacked endogenous B-tropic MuLV DNA sequences. In addition, none of 116 F1 hybrid mice derived from male BXH-2 mice spontaneously produced ecotropic MuLV early in life. These results suggest that the B-tropic virus is horizontally transmitted in BXH-2 mice. Southern analysis of DNA from tumor tissues of 12 BXH-2 mice showed that amplification of ecotropic-specific DNA sequences had occurred in lymphomatous tissues of 3 mice and suggested that these tumors were monoclonal. The number of newly acquired proviruses, which appeared to be structurally nondefective and integrated at different sites, varied from one to three copies. Since lymphomatous tissues from only 3 of 12 mice examined carried additional detectable ecotropic proviruses, these results suggest that amplification of ecotropic MuLV DNA sequences is not required for maintenance of transformation in BXH-2 lymphomas.  相似文献   

2.
BXH-2 recombinant inbred (RI) mice produce high titers of B-ecotropic murine leukemia virus beginning early in life and have a high incidence of non-T-cell leukemias that occur before 1 year of age. The leukemias that develop are in some cases associated with hind limb paralysis. In addition, a dualtropic mink cell focus-forming virus has been isolated from leukemic cells of BXH-2 mice. Immunological and cytochemical characterization of the BXH-2 leukemias showed that they are of the myeloid lineage. To assess the oncogenicity of the BXH-2 viruses, newborn mice of several BXH RI strains were inoculated at birth with biologically cloned B-ecotropic or mink cell focus-forming murine leukemia virus. These studies demonstrated that the B-ecotropic virus can induce myeloid leukemias in other BXH RI strains, whereas the dualtropic mink cell focus-forming isolates were nononcogenic in the strains tested. DNA-DNA reassociation analysis indicated that the organotropism of the B-ecotropic murine leukemia virus is confined to lymphoid tissues. Southern analysis of tumor DNAs showed that there was amplification of ecotropic virus-specific sequences in BXH-2 myeloid tumors and in all leukemias induced in other BXH RI strains by inoculation of the BXH-2 B-ecotropic virus. Although B-ecotropic virus is expressed in central nervous tissues of paralyzed BXH-2 mice, we were unable to induce the disorder in several BXH RI strains inoculated intracranially at birth with either the B-ecotropic or dualtropic virus. These results suggest that the paralysis that occurs in BXH-2 mice is due to the infiltration of leukemic cells into the central nervous system.  相似文献   

3.
The segregation of genes that enhance the induction of ecotropic murine leukemia viruses (In loci) has been compared with the segregation of ecotropic-specific nucleotide sequences in 12 low-leukemic mouse strains and 18 recombinant inbred strains. Endogenous ecotropic viruses of these strains are of genome length and structurally similar to AKR ecotropic proviruses. Low-leukemic strains of related pedigree contain ecotropic proviruses at common integration sites. Loci previously identified which enhance induction of ecotropic viruses (In genes) were correlated with the inheritance of ecotropic viral sequences in inbred low-leukemic mouse strains and in CXB recombinant inbred mouse strains. However, four BXH recombinant inbred strains were observed to possess an In gene(s) yet lack the probed envelope gene region for the corresponding endogenous ecotropic virus. These observations indicate that at least one gene that enhances ecotropic virus expression in vitro is encoded by DNA sequences outside ecotropic proviruses or by subgenomic viral sequences.  相似文献   

4.
Among 12 recombinant inbred strains of mice derived from crossing two strains, C57BL/6J and C3H/HeJ, which have a low incidence of neoplastic disease, one strain (BXH-2) has been found to have a high incidence of lymphoma, of non-T-cell origin, at an early age. The BXH-2 strain carries the Fv-1b allele and spontaneously expresses a B-tropic murine leukemia virus beginning at as early as 10 days of gestation and continuing throughout their life. No significant differences in ecotropic virus titers were observed at any age tested (16 to 17 days of gestation through 7 months), whereas xenotropic virus was first detected in lymphoid tissues of 2-month-old mice and virus titers increased with age. Dual tropic virus(es), which induced cytopathic changes on mink lung cells, was isolated from BXH-2 lymphomatous tissues. Unlike AKR mink lung focus-forming virus (N-tropic recombinant), BXH-2 dual tropic virus is B tropic and induces cytopathic changes in mouse fibroblast cultures as well. The BXH-2 mouse provides a model system for studying the role of replication-competent viruses in spontaneously occurring leukemias of non-T-cell lineage and neurological disease.  相似文献   

5.
Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant.  相似文献   

6.
In C58 and AKR mice, endogenous N-tropic, ecotropic murine leukemia virus (MuLV) proviruses become activated in rare cells during embryogenesis. Resultant replication-competent progeny viruses then actively infect a large number of cells throughout the fetus, including cells in the developing central nervous system. By in situ hybridization analyses, we have assessed the presence of ecotropic MuLV RNA in the brains of C58 mice as a function of age. Only a few ecotropic MuLV-positive cells were observed in weanling mice, but the number of positive cells in the brain increased progressively with increasing age of the mice. Throughout the lives of the mice, the ecotropic MuLV RNA-positive cells were primarily located in well-defined white-matter tracts of the brain (commissura anterior, corpus callosum, fimbria hippocampi, optical tract, and striatum) and of the spinal cord. Cells of the subventricular zone also expressed ecotropic MuLV RNA, and in older mice a small number of positive cells were present in the grey matter. Infection of endogenous ecotropic MuLV provirus-less CE/J mice in utero with ecotropic MuLV clone AKR-623 resulted in the extensive infection of brain cells. The regional distribution of ecotropic MuLV RNA-containing cells was the same as observed in the brains of C58 mice, in which cells became infected by endogenously activated virus, but the number of positive cells was higher.  相似文献   

7.
OBJECTIVE: Mouse strains carrying endogenous ecotropic murine leukemia viruses (MuLV) are capable of expressing infective virus throughout life. Risk of transplacental transmission of MuLV raises concerns of embryo infection and induction of pathogenic effects, and postnatal MuLV infection may lead to tumorigenesis. METHODS: Endogenous ecotropic MuLV-negative SWR/J embryos were implanted into Akv-infected viremic SWR/J mice, into spontaneously provirus-expressing AKR/J mice, and into noninfected SWR/J control mice; virus integration and virus expression were investigated at 14 days' gestation. Tumor development was monitored over 18 months. RESULTS: Of 111 embryos, 20 (18%) recovered from Akv-infected SWR/J mice, which had developed normally, were infected. New proviruses were detected in 10 of 111 (9%) embryos from Akv-infected SWR/J mice, and in 2 of 60 (3%) embryos from AKR/J mice; none expressed viral protein. Of 127 embryos recovered from Akv-infected SWR/J mice, 16 (13%) were dead; 4 of 5 (80%) were infected and expressed viral protein. Of 71 embryos from AKR/J mice, 11 (15%) were dead, and 2 of 2 had virus integration; virus expression was not detected. Numbers of dead embryos recovered from experimentally infected, viremic SWR/J mice and from spontaneously endogenous MuLV-expressing AKR/J mice were significantly higher, compared with numbers from nonviremic SWR/J control mice, and embryo lethality was significantly associated with prenatal provirus expression. Postnatal inoculation of Akv induced lymphoblastic lymphomas in 15 of 24 (61%) SWR/J mice within mean +/- SD latency of 14 +/- 2.4 months. Only 3 of 39 (8%) control mice developed lymphomas (P < 0.005). CONCLUSION: Embryos in MuLV-viremic dams are readily infected, and inappropriate prenatal expression of leukemogenic endogenous retroviruses may play a critical role in embryo lethality and decreased breeding performance in ecotropic provirus-positive mouse strains.  相似文献   

8.
Y Okada  K Suzuki  K Komuro    T Mizuochi 《Journal of virology》1992,66(9):5177-5182
Maternal transmission of a murine leukemia virus (MuLV) mixture named LP-BM5 MuLV, which is knwon to induce murine AIDS (MAIDS), was investigated. Adult female C57BL/10 mice were inoculated intraperitoneally with LP-BM5 MuLV. When the virus-inoculated female mice developed splenomegaly or lymphadenopathy, they were mated with normal C57BL/10 male mice. Of 56 offspring born to MAIDS mothers, 14 appeared to develop MAIDS, as assessed by the occurrence of splenomegaly or lymphadenopathy as well as the mitogen response of spleen cells. The occurrence of MAIDS in offspring was found to be accompanied by the maternal transmission and expansion of a defective virus genome from which almost the entire pol and env regions are deleted. On the other hand, the ecotropic helper virus genome was detected in all offspring regardless of the occurrence of MAIDS. To examine the mode of maternal transmission of LP-BM5 MuLV, foster-nursing experiments were conducted. The ecotropic helper viruses were found in all normal offspring nursed by a MAIDS mother, and some of them developed MAIDS. In contrast, none of offspring born to a MAIDS mother that were nursed by an uninfected foster mother either carried the LP-BM5 MuLV or developed MAIDS. Finally, both the defective and the ecotropic helper viruses were detected in LP-BM5 MuLV-infected mother's milk. These results indicated that maternal transmission of LP-BM5 MuLV occurs with a high frequency and is mediated by mother's milk.  相似文献   

9.
Oncogenicity of AKR endogenous leukemia viruses.   总被引:11,自引:0,他引:11       下载免费PDF全文
Four biologically distinct groups of endogenous murine leukemia virus (MuLV) have been isolated from AKR mice. These viruses included (i) ecotopic XC+ MuLV that occur in high titer in normal tissues and serum of AKR mice throughout their life span, (ii) ecotropic XC- MuLV that are produced in high titers by leukemia cells, (iii) xenotropic MuLV that are readily demonstrable only in aged mice, and (iv) polytropic MuLV thatarise in the thymuses of aged mice as a consequence of genetic recombination between ecotropic and xenotropic MuLV. Virus of each of these biological classes were assayed in AKR mice for their ability to accelerate the occurrence of spontaneous leukemia. Certain isolates of ecotropic XC- MuLV and polytropic MuLV were found to have high oncogenic activity. These viruses induced 100% leukemias within 90 days of inoculation. In contrast, ecotropic XC+ MuLV that were obtained from AKR embryo fibroblasts and xenotropic MuLV that were obtained from the lymphoid tissues of aged AKR mice did not demonstrate oncogenic activity. These findings demonstrate fundamental differences between XC- and XC+ ecotropic MuLV that are found in leukemic and normal tissues, respectively. Furthermore, these findings point to the role of ecotropic XC- and polytropic MuLV in the spontaneous leukemogenesis of AKR mice.  相似文献   

10.
Endogenous murine leukemia virus (MuLV) was induced with 5-iododeoxyuridine (IdUrd) from the high-leukemia mouse strain AKR and from two low-leukemia strains, C3H/He and BALB/c. A virus-free cell line from strain AKR readily gave rise to infectious, XC-positive MuLV upon treatment with IdUrd, whereas cells from strains C3H/He and BALB/c produced replication-deficient, XC-negative MuLV. IdUrd-induced cells also produced xenotropic and mink cell focus-forming MuLV. Xenotropic virus emerged at a higher titer from both AKR and BALB/c cells during two discrete time intervals, first at day 3 after induction and a second time during spread of the induced ecotropic MuLV. Xenotropic and mink cell focus-forming MuLVs were also produced by IdUrd-induced C3H/He cells but required another round of infection in Sc-1 cells for detection. The in vitro infectivity of endogenous ecotropic MuLV isolated by IdUrd induction from C3H/He cells correlated with pathogenicity in the Fv-1-compatible, leukemia-negative mouse strain NFS/N. Thus, the virulence of endogenous ecotropic MuLV may be an important factor in determining the leukemia incidence in these inbred strains of mice.  相似文献   

11.

Background

The amphotropic murine leukemia viruses (MuLV-A's) are naturally occurring, exogenously acquired gammaretroviruses that are indigenous to the Southern California wild mice. These viruses replicate in a wide range of cell types including human cells in vitro and they can cause both hematological and neurological disorders in feral as well as in the inbred laboratory mice. Since MuLV-A's also exhibit discrete interference and neutralization properties, the envelope proteins of these viruses have been extremely useful for studying virus-host cell interactions and as vehicles for transfer of foreign genes into a variety of hosts including human cells. However, the genomic structure of any of the several known MuLV-A's has not been established and the evolutionary relationship of amphotropic retroviruses to the numerous exogenous or endogenous MuLV strains remains elusive. Herein we present a complete genetic structure of a novel amphotropic virus designated MuLV-1313 and demonstrate that this retrovirus together with other MuLV-A's belongs to a distinct molecular, biological and phylogenetic class among the MuLV strains isolated from a large number of the laboratory inbred or feral mice.

Results

The host range of MuLV-1313 is similar to the previously isolated MuLV-A's except that this virus replicates efficiently in mammalian as well as in chicken cells. Compared to ENV proteins of other MuLV-A's (4070A, 1504A and 10A-1), the gp70 protein of MuLV-1313 exhibits differences in its signal peptides and the proline-rich hinge regions. However, the MuLV-1313 envelope protein is totally unrelated to those present in a broad range of murine retroviruses that have been isolated from various inbred and feral mice globally. Genetic analysis of the entire MuLV-1313 genome by dot plot analyses, which compares each nucleotide of one genome with the corresponding nucleotide of another, revealed that the genome of this virus, with the exception of the env gene, is more closely related to the biologically distinct wild mouse ecotropic retrovirus (Cas-Br-E) isolated from another region of the Southern California, than to any of the 15 MuLV strains whose full-length sequences are present in the GenBank. This finding was corroborated by phylogenetic analyses and hierarchical clustering of the entire genomic sequence of MuLV-1313, which also placed all MULV-A's in a genetically distinct category among the large family of retroviruses isolated from numerous mouse strains globally. Likewise, construction of separate dendrograms for each of the Gag, Pol and Env proteins of MuLV-1313 demonstrated that the amphotropic retroviruses belong to a phylogenetically exclusive group of gammaretroviruses compared to all known MuLV strains.

Conclusion

The molecular, biological and phylogenetic properties of amphotropic retroviruses including MuLV-1313 are distinct compared to a large family of exogenously- or endogenously-transmitted ecotropic, polytropic and xenotropic MuLV strains of the laboratory and feral mice. Further, both the naturally occurring amphotropic and a biologically discrete ecotropic retrovirus of the Southern California wild mice are more closely related to each other on the evolutionary tree than any other mammalian gammaretrovirus indicating a common origin of these viruses. This is the first report of a complete genomic analysis of a unique group of phylogenetically distinct amphotropic virus.  相似文献   

12.
The mixture of retroviruses termed LP-BM5 murine leukemia virus (MuLV) contains a replication-defective genome (BM5def), the crucial element for induction of murine AIDS (MAIDS), as well as helper B-tropic ecotropic and mink cell focus-forming MuLV. Among Fv-1b mouse strains, C57BL mice are sensitive to infection by these viruses and to development of MAIDS, but A/J mice are highly resistant to all viral components and to induction of disease. Inasmuch as previous genetic studies indicated a major role in susceptibility for the H-2D locus within the MHC, the effect of CD8+ T cells in A/J resistance to MAIDS was analyzed by depletion of this subset using mAb. A/J mice treated with anti-CD8 mAb beginning soon after inoculation with LP-BM5 MuLV developed disease within 5 wk after virus inoculation. Histopathologic and flow cytometry alteration of tissues and cells from the mAb-treated mice were identical to those seen in virus-infected MAIDS-sensitive strains, and assays for MuLV demonstrated high-level expression of ecotropic MuLV and integration of BM5def. Parallel studies of A/J mice treated with anti-CD4 mAb after infection revealed enhanced expression of ecotropic MuLV but no integration of BM5def, and no signs of MAIDS were detected. These observations indicate that CD8+ T cells are critical in the resistance of A/J mice to LP-BM5 MuLV replication and development of disease and suggest that CD4+ T cells play a role in regulation of ecotropic virus replication.  相似文献   

13.
Fractionated whole-body X irradiation of C57BL/Ka mice leads to the development of thymic leukemia in 90% of the treated animals at an average age of 6 months. Using a sensitive high-density cocultivation procedure, we were able to demonstrate the presence of ecotropic murine leukemia virus (MuLV) from 1 month post-irradiation up to leukemia development. These viruses are not specific to any one particular organ, but can be found in at least two of the three lymphoreticular tissues studied, namely, spleen, thymus, and bone marrow. Host range studies on the isolated viruses showed that both N- and B-tropic MuLV could be isolated early after irradiation. However, as mice reached an age where leukemias develop, only the B-tropic MuLV could be recovered. We have established cell lines from primary radiation-induced tumors that are being maintained in continuous culture: except one cell line, all are virus producers. The results clearly indicate that X irradiation induces ecotropic MuLV in C57BL/Ka mice and suggest that B-tropic MuLV might be involved in the disease process.  相似文献   

14.
The development of spontaneous lymphomas in CWD mice is associated with the expression of endogenous ecotropic murine leukemia viruses (MuLV) and the formation of recombinant viruses. However, the pattern of substitution of nonecotropic sequences within the envelope genes of the CWD class II recombinant viruses differs from that seen in class I recombinant MuLVs of AKR, C58, and HRS mice. To determine how CWD host genes might influence the envelope gene structure of the recombinant viruses, we characterized the responses of these mice to two different types of exogenous MuLVs. Neonatal mice injected the HRS class I recombinant PTV-1 became infected and developed T-cell lymphomas more rapidly than controls did. The inoculation of CWD mice with the leukemogenic AKR ecotropic virus SL3-3 led to the formation of recombinant MuLVs with a novel genetic structure and class II-like envelope genes, although SL3-3 generates class I recombinants in other strains. These results suggest that the absence of class I recombinant MuLVs in CWD mice is not related to the restriction of the replication or oncogenicity of class I viruses or to the absence of an appropriate ecotropic virus that can generate class I recombinants. More likely, the genes of CWD mice that direct the formation or selection of class II recombinant viruses affect the process of recombination between the ecotropic and nonecotropic envelope gene sequences.  相似文献   

15.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

16.
Wild-derived mice originally obtained from Asia, Africa, North America, and Europe were typed for in vitro sensitivity to ecotropic murine leukemia viruses and for susceptibility to Friend virus-induced disease. Cell cultures established from some wild mouse populations were generally less sensitive to exogenous virus than were cell cultures from laboratory mice. Wild mice also differed from inbred strains in their in vitro sensitivity to the host range subgroups defined by restriction at the Fv-1 locus. None of the wild mice showed the Fv-1n or Fv-1b restriction patterns characteristic of most inbred strains, several mice resembled the few inbred strains carrying Fv-1nr, and most differed from laboratory mice in that they did not restrict either N- or B-tropic murine leukemia viruses. Analysis of genetic crosses of Mus spretus and Mus musculus praetextus demonstrated that the nonrestrictive phenotype is controlled by a novel allele at the Fv-1 locus, designated Fv-10. The wild mice were also tested for sensitivity to Friend virus complex-induced erythroblastosis to type for Fv-2. Only M. spretus was resistant to virus-induced splenomegaly and did not restrict replication of Friend virus helper murine leukemia virus. Genetic studies confirmed that this mouse carries the resistance allele at Fv-2.  相似文献   

17.
Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98-F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general.  相似文献   

18.
Two types of endogenous ecotropic murine leukemia viruses (MuLVs), termed AKV- and Cas-E-type MuLVs, differ in nucleotide sequence and distribution in wild mouse subspecies. In contrast to AKV-type MuLV, Cas-E-type MuLV is not carried by common laboratory mice. Wild mice of Mus musculus (M. m.) castaneus carry multiple copies of Cas-E-type endogenous MuLV, including the Fv-4(r) gene that is a truncated form of integrated MuLV and functions as a host's resistance gene against ecotropic MuLV infection. Our genetic cross experiments showed that only the Fv-4(r) gene was associated with resistance to ecotropic F-MuLV infection. Because the spontaneous expression of infectious virus was not detected in M. m. castaneus, we generated mice that did not carry the Fv-4(r) gene but did carry a single or a few endogenous MuLV loci. In mice not carrying the Fv-4(r) gene, infectious MuLVs were isolated in association with three of six Cas-E-type endogenous MuLV loci. The isolated viruses showed a weak syncytium-forming activity for XC cells, an interfering property of ecotropic MuLV, and a slight antigenic variation. Two genomic DNAs containing endogenous Cas-E-type MuLV were cloned and partially sequenced. All of the Cas-E-type endogenous MuLVs were closely related, hybrid-type viruses with an ecotropic env gene and a xenotropic long terminal repeat. Duplications and a deletion were found in a restricted region of the hypervariable proline-rich region of Env glycoprotein.  相似文献   

19.
The biological and genetic characteristics of murine leukemia viruses (MuLV) derived from leukemic and normal HRS/J mice were studied. T1-oligonucleotide fingerprinting and mapping of viral RNAs from unpassaged isolates revealed the presence of complex mixtures of viral genomes. MuLV that were purified by endpoint dilution were genetically heterogeneous. Thus, endogenous retroviral sequences expressed in the tissues of HRS/J mice readily recombined with one another. Furthermore, the regular recovery of recombinant ecotropic MuLV suggested reciprocal in vivo complementation of a genetic defect(s) in each of the endogenous ecotropic proviruses Emv-1 and Emv-3. Some recombinant ecotropic viruses contained sequences in the p15E-U3 region that were not derived from Emv-1 and Emv-3 but were found in recombinant polytropic HRS/J viruses. Finally, comparison of the genetic structures of leukemogenic and nonleukemogenic MuLV of this strain implied that the oncogenic phenotype of these MuLV is encoded within env or the U3 region of the genome or both. Our results are consistent with a stepwise convergent evolution of recombinant MuLV in vivo in individual HRS/J mice. Ultimately, this process of selection results in formation of leukemogenic polytropic viruses.  相似文献   

20.
An ecotropic murine leukemia virus (MuLV) isolate has recently been shown to be able to infect the germ line or the early embryo or both when inoculated at birth to SWR/J females (J. J. Panthier, H. Condamine, and F. Jacob, Proc. Natl. Acad. Sci. USA 85:1156-1160, 1988). We have used this isolate to further study this phenomenon. By using the techniques of RNA-RNA in situ hybridization, immunocytochemistry, and transmission electron microscopy, the identities of two important cell types that are infected by ecotropic MuLV in the gonads of inoculated mice were determined. These cells are the thecal cells surrounding the follicles in the ovary and the Leydig cells in the testis. Both types actively synthesize viral RNA and express a viral antigen. Furthermore, we documented the production of viral particles by the thecal cells. The expression of ecotropic MuLV by nonlymphoid cells in vivo may play a key role in the vertical transmission of these viruses by females as well as in their horizontal transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号