首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Factors released from injured dopaminergic (DA) neurons may trigger microglial activation and set in motion a vicious cycle of neuronal injury and inflammation that fuels progressive DA neurodegeneration in Parkinson's disease. In this study, using proteomic and immunoblotting analysis, we detected elevated levels of cystatin C in conditioned media (CM) from 1-methyl-4-phenylpyridinium and dieldrin-injured rat DA neuronal cells. Immunodepletion of cystatin C significantly reduced the ability of DA neuronal CM to induce activation of rat microglial cells as determined by up-regulation of inducible nitric oxide synthase, production of free radicals and release of proinflammatory cytokines as well as activated microglia-mediated DA neurotoxicity. Treatment of the cystatin C-containing CM with enzymes that remove O- and sialic acid-, but not N-linked carbohydrate moieties markedly reduced the ability of the DA neuronal CM to activate microglia. Taken together, these results suggest that DA neuronal cystatin C plays a role in the neuronal injury-induced microglial activation and neurotoxicity. These findings from the rat DA neuron-microglia in vitro model may help guide continued investigation to define the precise role of cystatin C in the complex interplay among neurons and glia in the pathogenesis of Parkinson's disease.  相似文献   

2.
The inflammatory response mediated by microglia in the central nervous system is closely related to epilepsy. Notch signaling plays an important role in the microglial activation during hypoxia. This study aimed to investigate whether Notch signaling is involved in microglial activation and subsequent inflammation-related neuronal injury during the process of epileptogenesis in a rat model of temporal lobe epilepsy. By using western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence labeling, we found that the expression of Notch signaling increased after status epilepticus and that a γ-secretase inhibitor could significantly inhibit the upregulation of Notch signaling, the activation of microglia, and the release of proinflammatory cytokines. Likewise, the neuronal apoptosis and loss in the hippocampus after SE were attenuated by the γ-secretase inhibitor. These results suggest that Notch signaling plays a key role in neuroinflammation and inflammation-related neuronal damage in epilepsy, and γ-secretase inhibitors may become a novel prospective therapeutic agent for epilepsy.  相似文献   

3.
Brain disease is known to cause irrevocable and fatal loss of biological function once damaged. One of various causes of its development is damage to neuron cells caused by hyperactivated microglia, which function as immune cells in brain. Among the genes expressed in microglia stimulated by various antigens, annexin A1 (ANXA1) is expressed in the early phase of the inflammatory response and plays an important role in controlling the immune response. In this study, we assessed whether ANXA1 can be a therapeutic target gene for the initial reduction of the immune response induced by microglia to minimize neuronal damage. To address this, mouse-origin microglial cells were stimulated to mimic an immune response by lipopolysaccharide (LPS) treatment. The LPS treatment caused activation of ANXA1 gene and expression of inflammatory cytokines. To assess the biological function in microglia by the downregulation of ANXA1 gene, cells were treated with short hairpin RNA-ANXA1. Downregulated ANXA1 affected the function of mitochondria in the microglia and showed reduced neuronal damage when compared to the control group in the co-culture system. Taken together, our results showed that ANXA1 could be used as a potential therapeutic target for inflammation-related neurodegenerative diseases.  相似文献   

4.
Ha SK  Moon E  Lee P  Ryu JH  Oh MS  Kim SY 《Neurochemical research》2012,37(7):1560-1567
Under normal conditions in the brain, microglia play roles in homeostasis regulation and defense against injury. However, over-activated microglia secrete proinflammatory and cytotoxic factors that can induce progressive brain disorders, including Alzheimer's disease, Parkinson's disease and ischemia. Therefore, regulation of microglial activation contributes to the suppression of neuronal diseases via neuroinflammatory regulation. In this study, we investigated the effects of acacetin (5,7-dihydroxy-4'-methoxyflavone), which is derived from Robinia pseudoacacia, on neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells and in animal models of neuroinflammation and ischemia. Acacetin significantly inhibited the release of nitric oxide (NO) and prostaglandin E(2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV-2 cells. The compound also reduced proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, and inhibited the activation of nuclear factor-κB and p38 mitogen-activated protein kinase. In an LPS-induced neuroinflammation mouse model, acacetin significantly suppressed microglial activation. Moreover, acacetin reduced neuronal cell death in an animal model of ischemia. These results suggest that acacetin may act as a potential therapeutic agent for brain diseases involving neuroinflammation.  相似文献   

5.
Spreading depression (SD) is thought to cause migraine aura, and perhaps migraine, and includes a transient loss of synaptic activity preceded and followed by increased neuronal excitability. Activated microglia influence neuronal activity and play an important role in homeostatic synaptic scaling via release of cytokines. Furthermore, enhanced neuronal function activates microglia to not only secrete cytokines but also to increase the motility of their branches, with somata remaining stationary. While SD also increases the release of cytokines from microglia, the effects on microglial movement from its synaptic activity fluctuations are unknown. Accordingly, we used time-lapse imaging of rat hippocampal slice cultures to probe for microglial movement associated with SD. We observed that in uninjured brain whole microglial cells moved. The movements were well described by the type of Lévy flight known to be associated with an optimal search pattern. Hours after SD, when synaptic activity rose, microglial cell movement was significantly increased. To test how synaptic activity influenced microglial movement, we enhanced neuronal activity with chemical long-term potentiation or LPS and abolished it with TTX. We found that microglial movement was significantly decreased by enhanced neuronal activity and significantly increased by activity blockade. Finally, application of glutamate and ATP to mimic restoration of synaptic activity in the presence of TTX stopped microglial movement that was otherwise seen with TTX. Thus, synaptic activity retains microglial cells in place and an absence of synaptic activity sends them off to influence wider expanses of brain. Perhaps increased microglial movements after SD are a long-lasting, and thus maladaptive, response in which these cells increase neuronal activity via contact or paracrine signaling, which results in increased susceptibility of larger brain areas to SD. If true, then targeting mechanisms that retard activity-dependent microglial Lévy flights may be a novel means to reduce susceptibility to migraine.  相似文献   

6.
Microglia cells are the main mediators of neuroinflammation. Activation of microglia often aggravates the pathological process of various neurological diseases. Natural chemicals have unique advantages in inhibiting microglia-mediated neuroinflammation and improving neuronal function. Here, we examined the effects of asperosaponin VI (ASA VI) on LPS-activated primary microglia. Microglia were isolated from mice and pretreated with different doses of ASA VI, following lipopolysaccharide (LPS) administration. Activation and inflammatory response of microglia cells were evaluated by real-time fluorescence quantitative polymerase chain reaction (q-PCR), immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Signaling pathways were detected by western blotting. We found that the ASA VI inhibited the morphological expansion of microglia cells, decreased the expression and release of proinflammatory cytokines, and promoted the expression of antiinflammatory cytokines in a dose-dependent manner. ASA VI also activated PPAR-γ signaling pathway in LPS-treated microglia. The anti-inflammatory effects of ASA VI in microglia were blocked by treating PPAR-γ antagonist (GW9662). These results showed that ASA VI promote the transition of microglia cells from proinflammatory to anti-inflammatory by regulating PPAR-γ pathway.  相似文献   

7.
Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage.  相似文献   

8.
In several neurodegenerative diseases such as Alzheimer’s disease (AD), microglia are hyperactivated and release nitric oxide (NO) and proinflammatory cytokines, resulting its neuropathology. Mounting evidence indicates that dietary supplementation with coconut oil (CNO) reduces the cognitive deficits associated with AD; however, the precise mechanism(s) underlying the beneficial effect of CNO are unknown. In the present study, we examined the effects of lauric acid (LA), a major constituent of CNO, on microglia activated experimentally by lipopolysaccharide (LPS), using primary cultured rat microglia and the mouse microglial cell line, BV-2. LA attenuated LPS-stimulated NO production and the expression of inducible NO synthase protein without affecting cell viability. In addition, LA suppressed LPS-induced reactive oxygen species and proinflammatory cytokine production, as well as phosphorylation of p38-mitogen activated protein kinase and c-Jun N-terminal kinase. LA-induced suppression of NO production was partially but significantly reversed in the presence of GW1100, an antagonist of G protein-coupled receptor (GPR) 40, which is an LA receptor on the plasma membrane. LA also decreased LPS-induced phagocytosis, which was completely reversed by co-treatment with GW1100. Moreover, LA alleviated amyloid-β-induced enhancement of phagocytosis. These results suggest that attenuation of microglial activation by LA may occur via the GPR40-dependent pathway. Such effects of LA may reduce glial activation and the subsequent neuronal damage in AD patients who consume CNO.  相似文献   

9.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

10.
Continuous pre-exposure of immune cells to low level of inflammatory stimuli makes them hyporesponsive to subsequent exposure. This pathophysiological adaptation; known as endotoxin tolerance is a general paradigm behind several disease pathogenesis. Current study deals with this immunosuppression with respect to BV2 microglia. We attempted to investigate their immune response under prolonged endotoxin exposure and monitor the same upon withdrawal of the stimuli. BV2 microglia cells were maintained under continual exposure of lipopolysaccharide (LPS) for weeks with regular passage after 72 hr (prolonged LPS exposed cells [PLECs]). PLECs were found to be immunosuppressed with diminished expression of proinflammatory cytokines (IL6, IL1β, TNF-α, and iNOS) and production of nitric oxide, as compared to once LPS exposed cells. Upon remaintenance of cells in normal media without LPS exposure (LPS withdrawal cells [LWCs]), the induced immunosuppression reversed and cells started responding to inflammatory stimuli; revealed by significant expression of proinflammatory cytokines. LWCs showed functional similarities to never LPS exposed cells (NLECs) in phagocytosis activity and their response to anti-inflammatory agents like dexamethasone. Despite their immunoresponsiveness, PLECs were inflamed and showed higher autophagy rate than NLECs. Additionally, we investigated the role of inhibitor of apoptotic proteins (IAPs) in PLECs to understand whether IAPs aids in the survival of microglial cells under stress conditions. Our results revealed that cIAP1 and cIAP2 are induced in PLECs which might play a role in retaining the viability. Furthermore, antagonism of IAPs has significantly induced cell death in PLECs suggesting the role of IAPs in microglial survival under stress condition. Conclusively, our data suggest that continuous exposure of BV2 microglia cells to LPS results in transient immunosuppression and indicates the involvement of IAPs in retaining their viability under inflammatory stress.  相似文献   

11.
An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich''s ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich''s ataxia.  相似文献   

12.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific procarcinogen. We have investigated whether NNK causes inflammatory upheaval in the brain by activation of resident microglia and astrocyte and result in bystander neuronal damage. We have carried out the work in both in vitro and in vivo models. We have found that treatment with NNK causes significant activation of mouse microglial (BV2) cell line as evident by increase in reactive oxygen species and nitric oxide level. Western blot analysis has showed increase in proinflammatory signaling proteins, proinflammatory effector proteins, and other stress-related proteins. Interestingly, increased levels of proinflammatory cytokines like interleukin (IL)-6, tumor necrosis factor-α, monocyte chemoattractant protein 1 (MCP1), and IL-12p70 are also detected. Work from our in vivo studies has demonstrated similar increase in proinflammatory signaling and effector molecules along with the proinflammatory cytokine levels, following NNK treatment. Immunohistochemical staining of the brain sections of NNK-treated mice reveals massive microglial and astrocyte activation along with distinct foci of neuronal damage. Both in vitro and in vivo results provide strong indication that NNK causes significant upheaval of the inflammatory condition of brain and inflicts subsequent neuronal damage.  相似文献   

13.
Activated microglia release inflammatory mediators that display either beneficial or harmful effects on neuronal survival and signaling. In the present study we demonstrate that exposure to lipopolysaccharide leads to an increase in the lysosomal cysteine proteases, cathepsin B, K, S, and X, in culture supernatants of the microglia cell line BV-2. In addition, we observed an up-regulation of cathepsins in the cytoplasmic fraction in response to stimulation with lipopolysaccharide. Conditioned medium from these cells was toxic to the neuroblastoma cell line Neuro2a. Experiments with membrane-permeable and membrane-impermeable cysteine protease inhibitors suggested that blocking extracellular cathepsins had no effect on microglia-mediated neuron death in this medium transfer model. However, intracellular cathepsins seem to trigger the release of neurotoxic factors. In lipopolysaccharide-stimulated BV-2 cells, inhibition of intracellular cathepsins significantly diminished microglial activation characterized by reduced expression of different proinflammatory cytokines, thereby reducing the neurotoxic effects of the medium. This hitherto unknown intracellular effect of cysteine proteases in activated microglia might connect chronic neuroinflammation with neurodegeneration.  相似文献   

14.
Brain tissue damage following stroke or traumatic brain injury is accompanied by neuroinflammatory processes, while microglia play a central role in causing and regulating neuroinflammation via production of proinflammatory substances, including cytokines and chemokines. Here, we used brain slices, an established in situ brain injury model, from young adult and aged mice to investigate cytokine and chemokine production with particular focus on the role of microglia. Twenty four hours after slice preparation, higher concentrations of proinflammatory cytokines, i.e. TNF-α and IL-6, and chemokines, i.e. CCL2 and CXCL1, were released from brain slices of aged mice than from slices of young adult mice. However, maximal microglial stimulation with LPS for 24 h did not reveal age-dependent differences in the amounts of released cytokines and chemokines. Mechanisms underlying microglial cytokine and chemokine production appear to be similar in young adult and aged mice. Inhibition of microglial Kv1.3 channels with margatoxin reduced release of IL-6, but not release of CCL2 and CXCL1. In contrast, blockade of microglial P2Y12 receptors with PSB0739 inhibited release of CCL2 and CXCL1, whereas release of IL-6 remained unaffected. Cytokine and chemokine production was not reduced by inhibitors of Kir2.1 K+ channels or adenosine receptors. In summary, our data suggest that brain tissue damage-induced production of cytokines and chemokines is age-dependent, and differentially regulated by microglial Kv1.3 channels and P2Y12 receptors.  相似文献   

15.
Ischemic stroke induces microglial activation and release of proinflammatory cytokines, contributing to the expansion of brain injury and poor clinical outcome. Propofol has been shown to ameliorate neuronal injury in a number of experimental studies, but the precise mechanisms involved in its neuroprotective effects remain unclear. We tested the hypothesis that propofol confers neuroprotection against focal ischemia by inhibiting microglia-mediated inflammatory response in a rat model of ischemic stroke. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h of reperfusion. Propofol (50 mg/kg/h) or vehicle was infused intravenously at the onset of reperfusion for 30 minutes. In vehicle-treated rats, MCAO resulted in significant cerebral infarction, higher neurological deficit scores and decreased time on the rotarod compared with sham-operated rats. Propofol treatment reduced infarct volume and improved the neurological functions. In addition, molecular studies demonstrated that mRNA expression of microglial marker Cd68 and Emr1 was significantly increased, and mRNA and protein expressions of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 were augmented in the peri-infarct cortical regions of vehicle-treated rats 24 h after MCAO. Immunohistochemical study revealed that number of total microglia and proportion of activated microglia in the peri-infarct cortical regions were markedly elevated. All of these findings were ameliorated in propofol-treated rats. Furthermore, vehicle-treated rats had higher plasma levels of interleukin-6 and C-reactive protein 24 h after MCAO, which were decreased after treatment with propofol. These results suggest that propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines. Propofol may be a promising therapeutic agent for the treatment of ischemic stroke and other neurodegenerative diseases associated with microglial activation.  相似文献   

16.
Minocycline inhibits LPS-induced retinal microglia activation   总被引:3,自引:0,他引:3  
  相似文献   

17.
Microglial cells are the prime effectors in immune and inflammatory responses of the central nervous system (CNS). During pathological conditions, the activation of these cells helps restore CNS homeostasis. However, chronic microglial activation endangers neuronal survival through the release of various proinflammatory molecules and neurotoxins. Thus, negative regulators of microglial activation have been considered as potential therapeutic candidates to target neurodegeneration, such as that in Alzheimer's and Parkinson's diseases. The rhizome of Ligusticum chuanxiong Hort. (Ligusticum wallichii Franch) has been widely used for the treatment of vascular diseases in traditional oriental medicine. Butylidenephthalide (BP), a major bioactive component from L. chuanxiong, has been reported to have a variety of pharmacological activities, including vasorelaxant, anti‐anginal, anti‐platelet and anti‐cancer effects. The aim of this study was to examine whether BP represses microglial activation. In rat brain microglia, BP significantly inhibited the lipopolysaccharide (LPS)‐induced production of nitric oxide (NO), tumour necrosis factor‐α and interleukin‐1β. In organotypic hippocampal slice cultures, BP clearly blocked the effect of LPS on hippocampal cell death and inhibited LPS‐induced NO production in culture medium. These results newly suggest that BP provide neuroprotection by reducing the release of various proinflammatory molecules from activated microglia. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The phenomenon in which urokinase-type plasminogen activator (uPA) is induced in the axotomized facial nucleus suggests an interaction between injured motoneurons and microglia. We examined the relation of neurons and microglia to the induction of uPA in vitro. The amount of uPA released from a co-culture of neurons and microglia was much greater than the addition of that from each alone, suggesting the occurrence of an interaction between the two. The analysis of conditioned neuronal medium (CNM)-effects on microglia and conditioned microglial medium (CMM)-effects on neurons revealed that microglia enhance uPA release in response to CNM, rather than vice versa. Characterization of the CNM-effect on microglia demonstrated that CNM enhances not only uPA release but also the specific activity of acid phosphatase and 5'-nucleotidase in microglia. The profile of microglial activation caused by CNM was quite different from that caused by lipopolysaccharide (LPS)-activation. These results suggest that a specific soluble constituent(s) derived from neurons activates microglia by a mechanism different from LPS. As a candidate molecule for the microglial activation, brain-derived neurotrophic factor was detected in the CNM. Thus, uPA induction in the axotomized facial nucleus may be explained by a neuronal stimulus leading to uPA induction in microglia.  相似文献   

19.
Recognition of lipopolysaccharide (LPS), the endotoxin of gram-negative bacteria, by microglia occurs through its binding to specific receptors, cluster of differentiation 14 and toll-like receptor-4. LPS binding to these receptors triggers the synthesis of proinflammatory cytokines that coordinate the brain innate immune response to protect the CNS of the infection. Docosahexaenoic acid (DHA), a n -3 polyunsaturated fatty acid highly incorporated in the brain, is a potent immunomodulator. In this study, we investigated whether DHA modulates LPS receptor localization and, as a consequence, LPS-induced signaling pathway and proinflammatory cytokine production. We demonstrated that DHA, when added exogenously, is specifically enriched in membrane phospholipids, but not in raft lipids of microglial cells. DHA incorporation in membrane impaired surface presentation of LPS receptors cluster of differentiation 14 and toll-like receptor-4, but not their membrane subdomain localization. LPS-induced nuclear factor kappa B activation was inhibited by DHA, hence, LPS-induced proinflammatory cytokine synthesis of interleukin-1β and tumor necrosis factor α was strongly attenuated. We suggest that DHA is highly anti-inflammatory by targeting LPS receptor surface location, therefore reducing LPS action on microglia. This effect represents a new insight by which DHA modulates in the brain the expression of proinflammatory cytokines in response to bacterial product.  相似文献   

20.
This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号