首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Reproduction in most fish is typically a seasonal process, as spawning takes place usually at a given time of the year, depending on the reproduction strategy of the species, to ensure maximal survival of offspring. Nevertheless, fish reproduction cannot be considered an exclusively annual phenomenon, because spawning may also show daily rhythmicity. In this study, we investigated the existence of a daily spawning rhythm in gilthead seabream (Sparus aurata L) exposed to different light-dark (LD) cycles and at different times of the year using an automatic and programmable egg collector. Floatability and fertilization rates were analyzed at different times throughout the 24 h. The results showed a daily spawning rhythm with spanning occurring from 14:30 to 21:30 h, with the acrophase (peak time) being 18:29 and 18:08 h in fish exposed to an artificial photoperiod of 9L:15D in winter and in spring, respectively. Nevertheless, in fish exposed to a natural photoperiod of 12L:12D in spring, the acrophase of the rhythm was recorded later, at 21:28 h. The average fertilization rate was 87%, and no significant differences were found between the different hours of spawning. Moreover, when the LD cycle (9L:15D) was shifted by 12 h, the daily spawning rhythm gradually re-synchronized, resuming a stable phase-relationship after 4-5 transient days, which is characteristic of a endogenous circadian rhythm. Our results clearly demonstrated the existence of a 24 h period of spawning in gilthead sea bream, with a peak anticipating the forthcoming night, and its capacity to gradually re-synchronize after a 12 h shift in the LD cycle, pointing to the endogenous nature of this rhythm. These findings will be valuable for better understanding the reproductive physiology of this species and for optimizing the protocols of egg collection and larvae production in aquaculture.  相似文献   

2.
Reproduction in most fish is typically a seasonal process, as spawning takes place usually at a given time of the year, depending on the reproduction strategy of the species, to ensure maximal survival of offspring. Nevertheless, fish reproduction cannot be considered an exclusively annual phenomenon, because spawning may also show daily rhythmicity. In this study, we investigated the existence of a daily spawning rhythm in gilthead seabream (Sparus aurata L) exposed to different light‐dark (LD) cycles and at different times of the year using an automatic and programmable egg collector. Floatability and fertilization rates were analyzed at different times throughout the 24 h. The results showed a daily spawning rhythm with spanning occurring from 14:30 to 21:30 h, with the acrophase (peak time) being 18:29 and 18:08 h in fish exposed to an artificial photoperiod of 9L∶15D in winter and in spring, respectively. Nevertheless, in fish exposed to a natural photoperiod of 12L∶12D in spring, the acrophase of the rhythm was recorded later, at 21:28 h. The average fertilization rate was 87%, and no significant differences were found between the different hours of spawning. Moreover, when the LD cycle (9L∶15D) was shifted by 12 h, the daily spawning rhythm gradually re‐synchronized, resuming a stable phase‐relationship after 4–5 transient days, which is characteristic of a endogenous circadian rhythm. Our results clearly demonstrated the existence of a 24 h period of spawning in gilthead sea bream, with a peak anticipating the forthcoming night, and its capacity to gradually re‐synchronize after a 12 h shift in the LD cycle, pointing to the endogenous nature of this rhythm. These findings will be valuable for better understanding the reproductive physiology of this species and for optimizing the protocols of egg collection and larvae production in aquaculture. (Author correspondence: )  相似文献   

3.
In this paper we attempted to investigate the existence of daily fluctuations on plasma sexual steroids (17beta-estradiol, E(2) and testosterone, T) in Senegal sole (Solea senegalensis) females. We described the monthly day/night concentrations and seasonal daily rhythms in animals reared under natural photo- and thermo-period. In addition, the influence of the natural annual fluctuation of the water temperature on the plasma concentration of these steroids was investigated, using one group of Senegal sole under a natural photoperiod, but with an attenuated thermal cycle (around 17-20 degrees C) for one year. Although no significant day/night differences were detected in monthly samplings, the existence of an annual rhythm of E(2) and T (p<0.01) with an acrophase in February was revealed by COSINOR analysis. Maximum values were reached in March for both steroids (6.1+/-1.7 ng mL(-1) at mid-dark, MD and 4.0+/-0.6 ng mL(-1) at mid-light, ML for E2 and 1.4+/-0.4 ng mL(-1) at MD and 0.8+/-0.1 ng mL(-1) at ML for T) in anticipation of the spawning season (May-June). As regards seasonal daily rhythms, the presence of daily oscillations was revealed. At the spring solstice (21st March) a daily rhythm was observed for both steroids (COSINOR, p<0.01), with an acrophase at 20:00 h (E(2)) and at 21:08 h (T). In summer, autumn and winter no daily rhythms were observed due to the low steroid levels at those seasons. When Senegal sole females were submitted to an attenuated annual thermal cycle, the steroid rhythm disappeared (there was no surge in spring, as in the control group) and these fish did not spawn, despite being subjected to natural photoperiod conditions. This result underlined the importance of the natural annual fluctuation of water temperature and photoperiod on the synchronization of the spawning season and on the onset of steroidogenesis.  相似文献   

4.
枣粘虫交配行为生态学研究   总被引:17,自引:2,他引:15  
研究了枣粘虫(Ancylis sativa)成虫交配行为生态学。结果表明,越冬代成虫的交配高峰期为暗期6.0~8.0h,交配活动以羽化后2~3d表现强烈。环境温度越高,成虫开始交配的时间越迟。成虫交配持续时间多为3~4h,雌雄蛾均有多次交配习性,雄蛾平均交配3.3次,雌蛾平均交配1.59次。2日龄成虫从14L:10D光周期转移到连续黑暗下时,表现的交配行为与14L:10D下相似,均表现明显的节律,  相似文献   

5.
The objective of this study was to describe daily rhythms in leukocyte concentration in calves. The work was carried out during June - July 2004. Six animals were exposed to a natural photoperiod of about 10:14 LD. 5 ml blood samples were drawn from the jugular vein every two hours during the 1st, 4th, 14th, 20th and 30th days of life. Concentration of leukocytes was measured with a hematological counter and analyzed with repeated measures ANOVA and Cosinor analysis. Leukocyte concentration did not show a circadian rhythm at the moment of birth, but exhibited ultradian components that adjusted to daily patterns by the 30th day of life, with an acrophase at 0:35 h and R = 0.97%.  相似文献   

6.
The objective of this study was to control the reproductive cycle of pikeperch (Sander lucioperca) through determining the effects of different photoperiods and handling stress on the reproduction quality, timing and quality of spawning, fertilization, sex steroids, and cortisol concentrations. In this study, 72 pikeperch broodstocks with an average weight of 1367 ± 55.3 g were exposed to different photoperiods including constant light (24L:0D), constant darkness (0L:24D), and 12 h of light, 12 h of darkness (12L:12D) for 40 days. Half of the broodstocks of each photoperiod treatment were exposed to handling stress at a specific time of the day. Applying different photoperiods caused changes in the timing of broodstocks' spawning, so that fish under 24L:0D spawned earlier than those of other photoperiods, and stressed fish of the 0L:24D photoperiod had a delayed spawning compared to others. Also, the spawning of the broodstocks at different photoperiods which were exposed to handling stress was either delayed or did not occur at all. The highest and lowest spawnings were observed in the morning and at night, respectively. Fertilization percentage, number of eggs per gram, sex steroids including estradiol, progesterone, and testosterone, as well as cortisol and calcium concentrations did not show any significant difference in different photoperiods and handling stress. In stressed males of the 24L:0D photoperiod, there only was a significant decrease of testosterone concentration compared to the beginning of the experiment. Results indicated that the spawning performance of pikeperch broodstocks could be considerably stimulated using an effective photoperiod. Similarly, pikeperch broodstocks in culture systems are usually affected by handling stress, and this stress could lead to a poor reproductive performance and inhibition of spawning.  相似文献   

7.
The role of photoperiod as an environmental factor controlling reproduction, particularly the duration and ending of the breeding season, in the barbel was investigated by tank experiments. The experiments used a population of barbel matured in captivity which were stripped of eggs at frequent intervals: 10–15 'spawnings'for each female were obtained at 15-day intervals.
A decreasing photoperiod (16·5 light: 7·5 dark→8L: 16D), for an annual cycle contracted to 6 months duration, inhibited the spawning of both female and male fish. This allowed two periods of reproduction (February-May and September-November) within one year. Under natural or constant (10L: 14D) photoperiod conditions, spawning came to an end spontaneously. The rate (accelerated, slow or natural) of daylength increase did not affect the onset of spawning.  相似文献   

8.
Antarctic krill were maintained in large aquaria at Port of Nagoya Aquarium, Japan, under controlled photoperiod and were fed on phytoplankton and enriched animal feed. Maturation and spawning were induced after the light?:?dark (L?:?D) cycle was increased from 8?:?16 or 12?:?12 to 24?:?0, or when the L?:?D cycle was held constant at 14?:?10. This study is one of the first studies that demonstrate initiation of maturation and spawning events of krill under controlled photoperiod. Out of three experimental batches of krill, a total of 28 spawning events were observed. The mean number of eggs per event was 1424 with a range between 139 and 3458. The mean hatching success per batch was 19.1%. The relation between photoperiod and maturity/spawning is discussed. Furthermore, hatching is compared to previous studies and the reason for the low success is discussed.  相似文献   

9.
We investigated the effects of photoperiod on testicular activity in wild rabbits (Oryctolagus cuniculus) captured on Zembra Island (North Tunisia) and maintained in experimental photoperiodic conditions. Sexually inactive animals were subjected to alternate 3-mo periods of short days (8L:16D) and long days (16L:8D) for 1 yr. Testicular activity increased significantly and then decreased to levels equivalent to or lower than those measured during sexual quiescence after 1 mo of 8L:16D or 16L:8D, respectively. Eight groups of sexually active animals were also exposed to 8L:16D for 60 days. The light phase was divided into two photofractions (7.5 and 0.5 h). The short photofraction interrupted the dark phase 9.5-18.5 h after the beginning of the main photofraction. Testicular activity was inhibited if the short photofraction interrupted the dark phase 12.5 h or more after the beginning of the main photofraction. These results clearly confirm that photoperiod affects reproduction in this species: Short days stimulate reproduction, whereas long days inhibit it. The asymmetric pattern of skeleton photoperiods used demonstrated the existence of a circadian rhythm for photogonadosensitivity, with the photosensitive phase beginning 12.5 h after dawn. In this species, photoperiod length controls both the beginning and the end of the reproductive period. These results differ from those obtained with continental populations of wild rabbits, in which reproduction is inhibited by short day length. This difference may reflect genetic drift linked to the geographic isolation of this population, which is known to have been present on this small island for more than 2000 yr.  相似文献   

10.
Pinealectomized and control groups of Single Comb White Leghorn pullets were housed in individual laying cages within an experimental room maintained at a temperature of 22 ± 2°C. Hourly feed intake data were collected on the birds subjected to single 3-h changes in the duration of light or dark periods at either auroral (lights-on) or vespertine (lights-off) time of a 14L:10D lighting cycle. Feed intake reached an acrophase at either the 12th or 13th hour of the light period then declined until the onset of darkness. Vespertine changes in the light cycle were more effective in shifting the intake acrophase than the auroral changes. This observation was consistent irrespective of the direction of the change. When the laying hens were subjected to a 26-h lighting rhythm, the strength of cyclic light as a zeitgeber for feed intake rhythm was again demonstrated. The feed intake rhythm developed a 26-h duration with an acrophase consistently 22–23 hours post-vespertine. Pinealectomy did not effect the ability of hens to adjust to new lighting regimens.  相似文献   

11.
Plasma melatonin rhythms in euthermic marmots (Marmota flaviventris)   总被引:1,自引:0,他引:1  
Plasma melatonin concentrations were measured in marmots (Marmota flaviventris) maintained under three short-day (4L:20D; 8L:10D; 10L:14D) and one long-day (14L:10D) photoperiod(s). Each animal had a daily rhythm of plasma melatonin with elevated plasma melatonin levels occurring during the dark period of the lighting cycle. There were no significant differences between any peak values during the night. The mean duration of elevated night melatonin concentrations was significantly different between long-day (16L:8D) and 8L:16D or 4L:20D animals (P less than 0.01). Daytime plasma melatonin levels were not significantly different among the photoperiods. These results characterize plasma melatonin rhythms in a sciurid rodent and demonstrate that this rhythm is modified by photoperiod. Therefore, the plasma melatonin profile could convey information about day length to the animal or, alternatively, the rhythm may be acting as a time-keeping mechanism for other physiological functions.  相似文献   

12.
Transfer of male golden (Syrian) hamsters from a 14L:10D (light:dark) to a 5L:19D photoperiod induced significant changes in pituitary function tested in vitro. Within 27 days after transfer to a 5L:19D photoperiod, basal prolactin (Prl) release was significantly depressed and response to dopamine (DA) was significantly enhanced as compared to Prl release by pituitaries from 14L: 10D hamsters. Follicle-stimulating hormone (FSH) release tended to be depressed after 9 or 27 days of 5L:19D exposure, but the effect was not significant. After 77 days of 5L:19D exposure, Prl release was further suppressed, while FSH release surpassed that seen in 14L:10D pituitaries. In vitro FSH response to luteinizing hormone releasing hormone (LHRH) was also enhanced at this time. After 15 weeks of exposure to a short photoperiod, FSH secretion was still elevated above control levels, but Prl release and Prl response to DA were no longer different from that of 14L: 10D controls. Secretion of luteinizing hormone (LH) in vitro, either basal or LHRH stimulated, was not affected by photoperiod at any time tested. From these results, we conclude that short photoperiod exposure does not reduce the pituitary's ability to secrete LH or FSH, although secretion of Prl is severely attenuated.  相似文献   

13.
Chlorops oryzae is bivoltine in northern Japan but trivoltine in the southern part of the country. In the bivoltine strain, both the egg and larval stages were found to be sensitive to photoperiod. When the egg stage was exposed to a long-day photoperiod (16L:8D), larval development showed a short-day type response, and mature third-instar larvae entered a summer diapause under a long-day photoperiod (15L:9D). When eggs experienced short days, the first-instar larvae entered a winter diapause under short-day conditions, and the critical photoperiod in the larval stage ranged from about 14L:10D to about 12L:12D as the photoperiod experienced by the eggs increased from 12L:12D to 14L:10D. However, the development of the larvae after overwintering was not influenced by the photoperiod. In the trivoltine strain, larval development was retarded under a 14L:10D photoperiod but not under either shorter or longer photoperiods, when larvae had spent the egg stage under a 16L:8D photoperiod. The critical photoperiod of the larval stage for the induction of a winter diapause in the first instar was about 12L:12D, though it varied to some extent with the photoperiod during the egg stage. Thus, Chlorops oryzae was able to adapt itself to the local climatic conditions by the development of variable and complicated photoperiodic responses.  相似文献   

14.
The objective of this study was to investigate the effects of photoperiods longer than 14 h of light:10 h of dark (14L:10D) during the rearing period on the age at first egg laying (AFE) and the subsequent reproductive performance in geese. Sixty-six White Roman geese (18 male and 48 female) were divided into three groups and subjected to different lighting schemes, i.e. natural lighting (NAT; 23 degrees 51'N, 120 degrees 33'E), 14L and 18L. Birds in 14L and 18L groups were exposed to 14L:10D or 18L:6D, respectively, beginning at 19 weeks of age and followed by a photoperiod of 10L:14D from 40 weeks of age. The natural photoperiod, including both dawn and dusk was between 11.5L:12.5D and 14.5L:9.5D. The results showed that the AFE was postponed (P < 0.05). Average weight of the first three eggs laid and the fertility of these eggs were improved (P < 0.05) for the geese in 14L and 18L groups when compared to those raised under natural lighting conditions. Meanwhile, the duration of laying were shifted from spring to autumn, with the peak laying rate in September and November instead of March. It was concluded that geese exposed to the photoperiod longer than 14L:10D for 21 weeks during the rearing period would suppress their AFE. Thereafter, the onset of laying could be induced by being transferred to the photoperiod of 10L:14D. The manipulation of photoperiodic regimes used in this study might have a potential benefit for geese farmers through improved weight and fertility of eggs.  相似文献   

15.
Three subspecies of Peromyscus maniculatus originating from different latitudes were maintained from birth in light dark cycles that provided between 10 and 18 h of light per day. At 50 days of age, Chihuahua, Mexico mice (latitude of origin 27 degrees N) and South Dakota, U.S.A. mice (44 degrees N) kept in the 10L:14D photoperiod had reduced gonadal and seminal vesicle weights and a lower spermatogenic index than corresponding mice kept in a 14L:10D photoperiod. Some Chihuahua and South Dakota mice, apparently constituting nonphotoperiodic subpopulations, developed their gonads while kept in the short-day photoperiod. The critical day length for stimulation of sexual maturation was greater for mice from Manitoba, Canada (55 degrees N) than for mice from the lower latitudes. At 70 days of age, testes and seminal vesicle weights, and the spermatogenic index of Manitoba mice in the 14L:10D photoperiod, were lower than those of animals maintained in 16L:8D and 18L:6D photoperiods. Responsiveness to short day lengths was greater among adult South Dakota than adult Chihuahau mice and melatonin treatment significantly reduced testes weights of South Dakota but not of Chihuahua adult mice. Photoperiodic regulation of the reproductive system varies with latitude of origin. Differences in the critical day length necessary for stimulating development of functional reproductive activity and variations in the percent of photoperiodic animals within each subspecies, appear to contribute to latitudinal gradients in reproduction.  相似文献   

16.
There are two effects of long day length on reproductive responses in birds, one is the photoinduction of gonadal growth and maturation and the other is the induction of gonadal regression and photorefractoriness. Although it is likely that the same photoreceptors are involved in the photoinduction of gonadal growth and the onset and maintenance of photorefractoriness. and so the influence of wavelength should be similar, this has not been investigated. Therefore, we investigated the influence of light wavelength on reproductive photorefractoriness in the migratory male blackheaded bunting held under long photoperiods. In mid May, when photoperiod was approximately 14L:10D (14 hours light:10 hours darkness), eight groups of sexually mature birds were moved indoors on an artificial photoperiod of 14L:10D (L - 450 lux. D - 0 lux). Then after 3 weeks, for six groups, a 4-h light period in the morning (zt 0-4; zt 0 [zeitgeber time 0] refers to the beginning of lights-on period) or in the evening (zt 10-14) was substituted with green (428 nm), red (654 nm) or white light at 16 +/- 2 lux intensity. Of the remaining two groups, one was maintained on 14L: 10D and the other transferred to 10L:14D: these served as controls. At the end of 4 weeks, all birds were found to have undergone testicular regression, irrespective of LD cycle they were exposed to. When these gonadally regressed birds were subjected to 16L:8D for another 4 weeks, to test their responsiveness to the stimulatory effects of long day lengths, only those exposed to 10L:14D and 14L:10D with a 4-h green light period showed testicular regrowth. On the other hand, birds exposed to 14L:10D with a 4-h white or red light period remained fully regressed, similar to 14L:10D controls. Except for some individual difference, there was no difference in response between the groups that received a 4-h light period in the morning and that received it in the evening. These results suggest that the wavelengths of light influence induction of buntings from the photosensitive state into the photorefractory state. Whereas the short light wavelengths facilitated recovery from the photorefractoriness, the long light wavelengths were more effective in maintaining the photorefractoriness.  相似文献   

17.
In seasonally breeding fish species, altered fecundity, fertility, and spawning interval are associated with changes in environmental cues such as temperature and photoperiod. To determine quantitative impact of these cues on a suite of reproductive endpoints, groups of medaka (Oryzias latipes; two breeding pairs per group) were subjected to varying photoperiod and temperature regimes. Embryo production ceased after photoperiod reduction from 16L:8D to 8L:16D (at 25 degrees C). A severe decline in production was observed after a temperature decrease of 10 degrees C (25 degrees C to 15 degrees C [16L:8D]). Under reduced photoperiod, histologic analysis showed no mature ova and moderate oocyte atresia in all individuals. However, reduced temperature (15 degrees C) produced only mild oocyte atresia and fewer mature ova. Under both reduced photoperiod and reduced temperature regimes, mature spermatozoa were observed. Offspring viability, along with spawning interval, were not affected by photoperiod reduction. Temperature change had no effect on offspring viability but caused an increase in spawning interval. A shortened photoperiod profoundly affected medaka reproduction, whereas decreased temperature reduced, but did not arrest, fertility; reduced photoperiod decreased fecundity. These findings have important implications for culture of medaka as well as use of this teleost model for reproductive toxicology studies.  相似文献   

18.
Daylengths during the spring are repeated in reverse order in the autumn. For some photoperiodic species, a given photoperiod may be stimulatory for reproduction in the spring and inhibitory in the autumn. The mechanisms regulating this type of seasonal response have, until recently, remained a mystery. Horton (1984a) showed in Microtus montanus that the photoperiod experienced by the mother influences the gonadal development of her young after weaning. To determine if this phenomenon is characteristic of other photoperiodic rodents, adult Djungarian hamsters were paired on 16L:8D, 14L:10D, or 12L:12D. Young males born from these pairings were killed at 15, 28, and 34 days of age to assess gonadal development (testes weight). At 15 days testicular development was identical in all groups; by 28 days, however, males raised in 16L:8D or 14L:10D exhibited a greater degree of testicular development than those raised in 12L:12D. Next, females maintained on each of the three photoperiods throughout gestation were transferred, with their offspring, to the other two photoperiods at birth. Postnatal exposure to 14L:10D or 12L:12D inhibited testicular development in young that had been gestated on 16L:8D. Both 16L:8D and 14L:10D stimulated testicular growth in animals that had been gestated on 12L:12D or 14L:10D. Therefore, a) 16L:8D stimulates testicular growth in all animals, b) 12L:12D inhibits testicular growth in all animals, and c) the testicular response to 14L:10D depends on the photoperiod experienced by the mother during pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The mechanisms underlying the photoperiodic entrainment of the endogenous circannual rhythm of maturation in the rainbow trout were investigated by subjecting December-spawning fish to abrupt changes in daylength which varied in their timing or magnitude. These protocols advanced spawning by up to 4 months. Maturation occurred in sequence in fish maintained on 18L:6D from January and February, and in fish exposed to 18L:6D from December, January and February, followed by 6L:18D in May, indicating that the abrupt increases in daylength were effective entraining cues. `Long' photoperiods of between 12 and 22 h applied in January, followed by shorter photoperiods of between 3.5 and 13.5 h from May, were equally effective in advancing maturation. Maturation was also advanced, though to a lesser extent, in fish maintained on photoperiods of 8.5 or 10 h from January, followed by a photoperiod of 1.5 h from May. In contrast, maturation was delayed in fish maintained under a constant 8.5-h photoperiod from January, and these fish also exhibited a desynchronization of spawning times characteristic of endogenous circannual rhythms in free-run. Collectively, these results indicate that photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. Accepted: 7 August 1998  相似文献   

20.
In the present study, the influence of the long-term use of air-conditioning in summer on the cortisol rhythm was examined by measuring the rhythm in subjects who had been exposed to air-conditioning for a short [S] or long [L] time. Investigations were conducted twice in July and September. Atmospheric temperature and relative humidity near the subjects were measured for three days in each season. Saliva samples for cortisol analysis were collected every 2 hours during the daytime beginning at 8:00 h with subsequent sampling times at 10:00, 12:00, 14:00, 16:00, 18:00, 20:00 and 22:00 h. A questionnaire on sleep and duration of air-conditioning use was also undertaken. Ambient mean temperature was higher in the S group (mean+/-SD; 30.8+/-1.2 degrees C in July, 28.0+/-0.8 degrees C in September) than in the L group (28.0+/-1.2 degrees C in July, 27.3+/-1.0 degrees C in September) (p<0.01), while mean relative humidity did not differ. There were no differences in bedtime, waking time and sleeping hours either between groups or months. Diurnal patterns of salivary cortisol rhythm in July and September were similar in the S group, but the L group had a delayed rise of morning cortisol secretion in September compared with July. These results suggest that long-term exposure to an air-conditioned environment might adversely affect the human cortisol rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号