首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In all organisms, control of folate homeostasis is of vital importance to sustain the demand for one-carbon (C1) units that are essential in major metabolic pathways. In this study we induced folate deficiency in Arabidopsis (Arabidopsis thaliana) cells by using two antifolate inhibitors. This treatment triggered a rapid and important decrease in the pool of folates with significant modification in the distribution of C1-substituted folate coenzymes, suggesting an adaptive response to favor a preferential shuttling of the flux of C1 units to the synthesis of nucleotides over the synthesis of methionine (Met). Metabolic profiling of folate-deficient cells indicated important perturbation of the activated methyl cycle because of the impairment of Met synthases that are deprived of their substrate 5-methyl-tetrahydrofolate. Intriguingly, S-adenosyl-Met and Met pools declined during the initial period of folate starvation but were further restored to typical levels. Reestablishment of Met and S-adenosyl-Met homeostasis was concomitant with a previously unknown posttranslational modification that consists in the removal of 92 amino acids at the N terminus of cystathionine gamma-synthase (CGS), the first specific enzyme for Met synthesis. Rescue experiments and analysis of different stresses indicated that CGS processing is specifically associated with perturbation of the folates pool. Also, CGS processing involves chloroplastic serine-type proteases that are expressed in various plant species subjected to folate starvation. We suggest that a metabolic effector, to date unidentified, can modulate CGS activity in vivo through an interaction with the N-terminal domain of the enzyme and that removal of this domain can suppress this regulation.  相似文献   

2.
Folates in plants: biosynthesis, distribution, and enhancement   总被引:3,自引:0,他引:3  
Folates are crucial intermediates for a set of reactions that involve the transfer of single-carbon units (C1 metabolism). They are directly involved in the synthesis of nucleic acids, methionine, pantothenate, glycine and serine, and indirectly, through S-adenosyl methionine, in all methylation reactions. Humans cannot synthesize folates de novo. In these organisms, folate deficiency has severe effects on health and affects large population groups around the world. Because plants are the main source of dietary folates, there are great concerns to select plant food having high concentrations of folates or to engineer their folate metabolism to increase the initial amount. All these attempts rely on what we know about the metabolism of folates. During these last 10 years, the complex pathway leading to the synthesis of folates has been deciphered. Our knowledge about folate synthesis and distribution during plant growth and development also increased substantially. However, important aspects of folate metabolism remain unclear, such as catabolism, transport and regulation of the homeostasis. The aim of this review was to summarize our recent findings, to describe the few attempts reported in the literature to engineer folate level in plants, and to discuss potential strategies that could be used for enhancement.  相似文献   

3.
A recessive Arabidopsis (Arabidopsis thaliana) mutant with short primary roots and root hairs was identified from a forward genetic screen. The disrupted gene in the mutant encoded the plastidial isoform of folylpolyglutamate synthetase (FPGS), previously designated as AtDFB, an enzyme that catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. The short primary root of atdfb was associated with a disorganized quiescent center, dissipated auxin gradient in the root cap, bundled actin cytoskeleton, and reduced cell division and expansion. The accumulation of monoglutamylated forms of some folate classes in atdfb was consistent with impaired FPGS function. The observed cellular defects in roots of atdfb underscore the essential role of folylpolyglutamates in the highly compartmentalized one-carbon transfer reactions (C1 metabolism) that lead to the biosynthesis of compounds required for metabolically active cells found in the growing root apex. Indeed, metabolic profiling uncovered a depletion of several amino acids and nucleotides in atdfb indicative of broad alterations in metabolism. Methionine and purines, which are synthesized de novo in plastids via C1 enzymatic reactions, were particularly depleted. The root growth and quiescent center defects of atdfb were rescued by exogenous application of 5-formyl-tetrahydrofolate, a stable folate that was readily converted to metabolically active folates. Collectively, our results indicate that AtDFB is the predominant FPGS isoform that generates polyglutamylated folate cofactors to support C1 metabolism required for meristem maintenance and cell expansion during postembryonic root development in Arabidopsis.  相似文献   

4.
Folate is thought to contribute to health and development by methylation regulation. Long interspersed nucleotide element‐1 (LINE‐1), which is regulated by methylation modification, plays an important role in sculpting the structure and function of genomes. Some studies have shown that folate concentration is related to LINE‐1 methylation. However, the direct association between LINE‐1 methylation and folate deficiency remains unclear. To explore whether folate deficiency directly induced LINE‐1 hypomethylation and to analyze the relationship between folate concentration and the LINE‐1 methylation level, mouse ESCs were treated with various concentrations of folate which was measured by chemiluminescent immunoassay, and the homocysteine content was detected by ELISA. LINE‐1 methylation was examined by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry at various time points. Concurrently, cell proliferation and differentiation were observed. The result showed that the intracellular folate decreases under folate‐deficient condition, conversely, homocysteine content increased gradually and there was a negatively correlated between them. Folate insufficiency induced LINE‐1 hypomethylation at the lowest levels in folate‐free group and moderate in folate‐deficient group, compared with that in the folate‐normal group at day 18. Moreover, LINE‐1 methylation level was positively correlated with folate content, and negatively correlated with homocysteine content. At corresponding time points, proliferation and differentiation of mouse ESCs showed no alteration in all groups. Our data indicated that folate deficiency affected the homeostasis of folate‐mediated one‐carbon metabolism, leading to reduced LINE‐1 methylation in mouse ESCs. This study provides preliminary evidence of folate deficiency affecting early embryonic development. J. Cell. Biochem. 114: 1549–1558, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Transfection of genes that code for enzymes of energy metabolism provides alternative models to study the adaptive response to energy restriction induced by endogenous changes instead of by unfavorable environmental conditions. Overexpression of the glycolytic enzyme fructose-2,6-bisphosphatase reduced the content of fructose 2,6-bisphosphate, inducing energy limitation in the mink lung epithelial cell line Mv1Lu. This metabolic stress reduced the ATP available in transfected cells by 20%, which downregulated active ion transport and protein turnover. Ion homeostasis and cell function require concomitant reductions in cell membrane ion permeability and protein damage. Our results indicate that glutathione content linked these features of the adaptive response to the endogenously induced metabolic downregulation.  相似文献   

6.
Deoxyadenosine (dAdo) and deoxyguanosine (dGuo) decrease methionine synthesis from homocysteine in cultured lymphoblasts; because of the possible trapping of 5-methyltetrahydrofolate this could lead to decreased purine nucleotide synthesis. Since purine deoxynucleosides could also inhibit purine synthesis de novo at an early step not involving folate metabolism, we measured in azaserine-treated cells 5-amino-4-imidazolecarboxamide (Z-base)-dependent purine nucleotide synthesis using [14C]formate. In the T lymphoblasts, Z-base-dependent purine nucleotide synthesis was decreased 26% by 0.3 microM-dAdo, 21% by 1 microM-dGuo and 28% by 1 microM-adenosine dialdehyde, a potent S-adenosylhomocysteine hydrolase inhibitor; homocysteine fully reversed the inhibitions. The B lymphoblasts were considerably less sensitive to the deoxynucleoside-induced decrease in Z-base-dependent purine nucleotide synthesis, with 100 microM-dAdo required for significant inhibition and no inhibition by dGuo at this concentration; homocysteine partly reversed the inhibition by dAdo. The observed decrease in Z-base-dependent purine nucleotide synthesis could not be attributed either to dUMP depletion changing the folate pools or to decreased ATP availability because dUrd was without effect and during the experimental period the intracellular ATP concentration did not change significantly. Cells with 5,10-methylenetetrahydrofolate reductase deficiency were relatively resistant to inhibition of Z-base-dependent purine nucleotide synthesis by dAdo and adenosine dialdehyde. Our results suggest that deoxynucleosides decrease purine nucleotide synthesis by trapping 5-methyltetrahydrofolate.  相似文献   

7.
Methionine S-adenosyltransferase (MAT) catalyzes the only reaction that produces the major methyl donor in mammals. Low-dose methotrexate is the most commonly used disease-modifying antirheumatic drug in human rheumatic conditions. The present study was conducted to test the hypothesis that methotrexate inhibits MAT expression and activity in vitro and in vivo. HepG2 cells were cultured under folate restriction or in low-dose methotrexate with and without folate or methionine supplementation. Male C57BL/6J mice received methotrexate regimens that reflected low-dose clinical use in humans. S-adenosylmethionine and MAT genes, proteins and enzyme activity levels were determined. We found that methionine or folate supplementation greatly improved S-adenosylmethionine in folate-depleted cells but not in cells preexposed to methotrexate. Methotrexate but not folate depletion suppressed MAT genes, proteins and activity in vitro. Low-dose methotrexate inhibited MAT1A and MAT2A genes, MATI/II/III proteins and MAT enzyme activities in mouse tissues. Concurrent folinate supplementation with methotrexate ameliorated MAT2A reduction and restored S-adenosylmethionine in HepG2 cells. However, posttreatment folinate rescue failed to restore MAT2A reduction or S-adenosylmethionine level in cells preexposed to methotrexate. Our results provide both in vitro and in vivo evidence that low-dose methotrexate inhibits MAT genes, proteins, and enzyme activity independent of folate depletion. Because polyglutamated methotrexate stays in the hepatocytes, if methotrexate inhibits MAT in the liver, then the efficacy of clinical folinate rescue with respect to maintaining hepatic S-adenosylmethionine synthesis and normalizing the methylation reactions would be limited. These findings raise concerns on perturbed methylation reactions in humans on low-dose methotrexate. Future studies on the clinical physiological consequences of MAT inhibition by methotrexate and the potential benefits of S-adenosylmethionine supplementation on methyl group homeostasis in clinical methotrexate therapies are warranted.  相似文献   

8.
9.
Folate being an important vitamin of B Complex group in our diet plays an important role not only in the synthesis of DNA but also in the maintenance of methylation reactions in the cells. Folate metabolism is influenced by several processes especially its dietary intake and the polymorphisms of the associated genes involved. Aberrant folate metabolism, therefore, affects both methylation as well as the DNA synthesis processes, both of which have been implicated in the development of various diseases. This paper reviews the current knowledge of the processes involved in folate metabolism and consequences of deviant folate metabolism, particular emphasis is given to the polymorphic genes which have been implicated in the development of various diseases in humans, like vascular diseases, Down's syndrome, neural tube defects, psychiatric disorders and cancers.  相似文献   

10.
Reduced oxygen availability (hypoxia) leads to increased production of reactive oxygen species (ROS) by the electron transport chain. Here, I review recent work delineating mechanisms by which hypoxia‐inducible factor 1 (HIF‐1) mediates adaptive metabolic responses to hypoxia, including increased flux through the glycolytic pathway and decreased flux through the tricarboxylic acid cycle, in order to decrease mitochondrial ROS production. HIF‐1 also mediates increased flux through the serine synthesis pathway and mitochondrial one‐carbon (folate cycle) metabolism to increase mitochondrial antioxidant production (NADPH and glutathione). Dynamic maintenance of ROS homeostasis is required for induction of the breast cancer stem cell phenotype in response to hypoxia or cytotoxic chemotherapy. Consistently, inhibition of phosphoglycerate dehydrogenase, the first enzyme of the serine synthesis pathway, in breast cancer cells impairs tumor initiation, metastasis, and response to cytotoxic chemotherapy. I discuss how these findings have important implications for understanding the logic of the tumor microenvironment and for improving therapeutic responses in women with breast cancer.  相似文献   

11.
Plants can survive a limiting nitrogen (N) supply by developing a set of N limitation adaptive responses. However, the Arabidopsis nla (nitrogen limitation adaptation) mutant fails to produce such responses, and cannot adapt to N limitation. In this study, the nla mutant was utilized to understand further the effect of NLA on Arabidopsis adaptation to N limitation. Grown with limiting N, the nla mutant could not accumulate anthocyanins and instead produced an N limitation-induced early senescence phenotype. In contrast, when supplied with limiting N and limiting phosphorus (Pi), the nla mutants accumulated abundant anthocyanins and did not show the N limitation-induced early senescence phenotype. These results support the hypothesis that Arabidopsis has a specific pathway to control N limitation-induced anthocyanin synthesis, and the nla mutation disrupts this pathway. However, the nla mutation does not affect the Pi limitation-induced anthocyanin synthesis pathway. Therefore, Pi limitation induced the nla mutant to accumulate anthocyanins under N limitation and allowed this mutant to adapt to N limitation. Under N limitation, the nla mutant had a significantly down-regulated expression of many genes functioning in anthocyanin synthesis, and an enhanced expression of genes involved in lignin production. Correspondingly, the nla mutant grown with limiting N showed a significantly lower production of anthocyanins (particularly cyanidins) and an increase in lignin contents compared with wild-type plants. These data suggest that NLA controls Arabidopsis adaptability to N limitation by channelling the phenylpropanoid metabolic flux to the induced anthocyanin synthesis, which is important for Arabidopsis to adapt to N limitation.  相似文献   

12.
Abstract. Folate deficiency will induce abnormal deoxynucleoside triphosphate (dNTP) metabolism because folate-derived one-carbon groups are essential for de novo synthesis of purines and the pyrimidine, thymidylate. Under conditions of methionine deprivation, a functional folate deficiency for deoxynucleoside triphosphate synthesis is induced as a result of the irreversible diversion of available folates toward endogenous methionine resynthesis from homocysteine. The purpose of the present study was to examine the effect of nutritional folate and/or methionine deprivation in vitro on intracellular dNTP pools as related to DNA synthesis activity and cell cycle progression. Primary cultures of mitogen-stimulated rat splenic T-cells were incubated in complete RPMI 1640 medium or in custom-prepared RPMI 1640 medium lacking in folic acid and/or methionine. Parallel cultures, initiated from the same cell suspension, were analysed for deoxyribonucleotide pool levels and for cell proliferation. The distribution of cells within the cell cycle was quantified by dual parameter flow cytometric bromodeoxyuridine/propidium iodide DNA analysis which allows more accurate definition of DNA synthesizing S-phase cells than the traditional DNA-specific staining with propidium iodide alone. Relative to cells cultured in complete RPMI 1640 media, the cells cultured in media deficient in folate, methionine or in both nutrients manifested increases in the deoxythymidylate pool and an apparent depletion of the deoxyguanosine triphosphate pool. Both adenosine triphosphate and nicotinamide adenine diphosphate levels were significantly reduced with single or combined deficiencies of folate and methionine. These nucleotide pool alterations were associated with a decrease in the proportion of cells actively synthesizing DNA and an increase in cells in G2+ M phase of the cell cycle. Folate deprivation in the presence of adequate methionine produced a moderate decrease in DNA synthesizing cells over the 68 h incubation. However, methionine deprivation, in the presence or absence of folate, severely compromised DNA synthesis activity. These results are consistent with the established ‘methyl trap’ diversion of available folates towards the resynthesis of methionine from homocysteine and away from nucleotide synthesis. The data confirm the metabolic interdependence of folic acid and methionine and emphasize the pivotal role of methionine on the availability of folate one-carbon groups for deoxynucleotide synthesis. The decrease in DNA synthesis activity under nutrient conditions that negatively affect nucleotide biosynthesis suggest a possible role for abnormal dNTP metabolism in the regulation of cell cycle progression and DNA synthesis.  相似文献   

13.
Folic acid plays a central role in anabolic metabolism by supplying single-carbon units at varied levels of oxidation for both nucleotide and amino acid biosyntheses. It has been proposed that 5-amino-4-imidazole carboxamide riboside 5'-triphosphate (ZTP), an intermediate in de novo purine biosynthesis, serves as a signal of cellular folate stress and mediates a physiologically beneficial response to folate stress in Salmonella typhimurium (B. R. Bochner, and B. N. Ames, Cell 29:929-937, 1982). We examined the physiological response of Escherichia coli to folate stress induced by the drugs psicofuranine, trimethoprim, and sodium sulfathiazole or by p-aminobenzoic acid (pABA) starvation. Analysis of nucleotide pools showed that psicofuranine or trimethoprim treatment of a prototrophic strain or growth of a pABA auxotroph on limiting pABA induced the production of the nucleotide ZTP, as previously observed in S. typhimurium by Bochner and Ames. Accumulation of ZTP and its precursor 5-amino-4-imidazole carboxamide riboside 5'-monophosphate (ZMP) did not correlate well with folate stress in E. coli, as measured by determination of the folate/protein ratios of extracts of treated cells. Treatment of cells with psicofuranine caused a marked accumulation of 5-amino-4-imidazole carboxamide ribonucleotides (Z-ribonucleotides) but a statistically insignificant drop in the folate/protein ratio of cell extracts. Sodium sulfathiazole treatment at a drug concentration that led to a threefold drop in the growth rate and in the folate/protein ratio of treated cells led to little accumulation of Z-ribonucleotides in E. coli A purF his+ strain which produces ZTP and ZMP when treated with trimethoprim was constructed. In this strain, histidine represses the synthesis of both ZMP and ZTP. Treatment of cells of this strain with trimethoprim resulted in a decrease in the folate/protein ratio of cell extracts, but a blockade of Z-ribonucleotide accumulation did not affect the extent of folate depletion seen in treated cells and had only a small effect on the resistance of this strain to growth inhibition by trimethoprim. The patterns of protein expression induced by treatment of this strain with trimethoprim or psicofuranine were examined by two-dimensional electrophoretic resolution of the total cellular proteins. No differences in protein expression were seen when the treatment were performed in media containing or lacking histidine. These studies failed to provide evidence in E. coli for a folate stress regulon controlled by ZTP.  相似文献   

14.
Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.  相似文献   

15.
16.
Cellular folate deficiency impairs one-carbon metabolism, resulting in decreased fidelity of DNA synthesis and inhibition of numerous S-adenosylmethionine-dependent methylation reactions including protein and DNA methylation. Cellular folate concentrations are influenced by folate availability, cellular folate transport efficiency, folate polyglutamylation, and folate turnover specifically through degradation. Folate cofactors are highly susceptible to oxidative degradation in vitro with the exception of 5-formyltetrahydrofolate, which may be a storage form of folate. In this study, we determined the effects of depleting cytoplasmic 5-formyltetrahydrofolate on cellular folate concentrations and folate turnover rates in cell cultures by expressing the human methenyltetrahydrofolate synthetase cDNA in human MCF-7 cells and SH-SY5Y neuroblastoma. Cells with increased methenyltetrahydrofolate synthetase activity exhibited: 1) increased rates of folate turnover, 2) elevated generation of p-aminobenzoylglutamate in culture medium, 3) depressed cellular folate concentrations independent of medium folic acid concentrations, and 4) increased average polyglutamate chain lengths of folate cofactors. These data indicate that folate catabolism and folate polyglutamylation are competitive reactions that influence cellular folate concentrations, and that increased methenyltetrahydrofolate synthetase activity accelerates folate turnover rates, depletes cellular folate concentrations, and may account in part for tissue-specific differences in folate accumulation.  相似文献   

17.
18.
Food fortification with folic acid and increased use of vitamin supplements have raised concerns about high folic acid intake. We previously showed that high folic acid intake was associated with hepatic degeneration, decreased levels of methylenetetrahydrofolate reductase (MTHFR), lower methylation potential, and perturbations of lipid metabolism. MTHFR synthesizes the folate derivative for methylation reactions. In this study, we assessed the possibility that high folic acid diets, fed to wild-type and Mthfr+/− mice, could alter DNA methylation and/or deregulate hepatic cholesterol homeostasis. Digital restriction enzyme analysis of methylation in liver revealed DNA hypomethylation of a CpG in the lipolysis-stimulated lipoprotein receptor (Lsr) gene, which is involved in hepatic uptake of cholesterol. Pyrosequencing confirmed this methylation change and identified hypomethylation of several neighboring CpG dinucleotides. Lsr expression was increased and correlated negatively with DNA methylation and plasma cholesterol. A putative binding site for E2F1 was identified. ChIP-qPCR confirmed reduced E2F1 binding when methylation at this site was altered, suggesting that it could be involved in increasing Lsr expression. Expression of genes in cholesterol synthesis, transport or turnover (Abcg5, Abcg8, Abcc2, Cyp46a1, and Hmgcs1) was perturbed by high folic acid intake. We also observed increased hepatic cholesterol and increased expression of genes such as Sirt1, which might be involved in a rescue response to restore cholesterol homeostasis. Our work suggests that high folic acid consumption disturbs cholesterol homeostasis in liver. This finding may have particular relevance for MTHFR-deficient individuals, who represent ~10% of many populations.  相似文献   

19.
Plants constantly monitor environmental fluctuations to optimize their growth and metabolism. One example is adaptive growth occurring in response to biotic and abiotic stresses. Here, we demonstrate that GH3-mediated auxin homeostasis is an essential constituent of the complex network of auxin actions that regulates stress adaptation responses in Arabidopsis. Endogenous auxin pool is regulated, at least in part, through negative feedback by a group of auxin-inducible GH3 genes encoding auxin-conjugating enzymes. An Arabidopsis mutant, wes1-D, in which a GH3 gene WES1 is activated by nearby insertion of the (35)S enhancer, exhibited auxin-deficient traits, including reduced growth and altered leaf shape. Interestingly, WES1 is also induced by various stress conditions as well as by salicylic acid and abscisic acid. Accordingly, wes1-D was resistant to both biotic and abiotic stresses, and stress-responsive genes, such as pathogenesis-related genes and CBF genes, were upregulated in this mutant. In contrast, a T-DNA insertional mutant showed reduced stress resistance. We therefore propose that GH3-mediated growth suppression directs reallocation of metabolic resources to resistance establishment and represents the fitness costs of induced resistance.  相似文献   

20.
亚甲基四氢叶酸还原酶(methylene tetrahydrofolatucte redase,MTHFR)是叶酸代谢过程中的关键酶,对叶酸和同型半胱氨酸的代谢以及DNA的合成、修复与甲基化均有重要作用。MTHFR基因变异导致酶热稳定性及活性降低,引起相关代谢及DNA甲基化异常,进而发生相关疾病。MTHFR具有多种变异型,本文对其中常见的一种C677T的多态性及其与疾病的相关性的研究进展做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号