首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The neural phenotype of an imaginal disc degenerate mutant l(1)d deg-3 was studied in histological sections. The mutant larvae showed severe abnormalities in the imaginal neural development. Gynandromorphs, which are composed of genetically mutant and nonmutant cells, were generated and analyzed as late larvae. The results of mosaic analysis were consistent with l(1)d deg-3 gene acting autonomously in the imaginal disc and imaginal neural cells. The optic lobe development patterns observed in the larval mosaics provided evidence for an eye disc-optic lobe interaction during the late third instar larval stage.  相似文献   

2.
We have carried out screens for lethal mutations on the second chromosome of Drosophila melanogaster that are associated with abnormal imaginal disc morphologies, particularly in the wing disc. From a collection of 164 P element-induced mutations with a late larva/pupa lethal phase we have identified 56 new loci whose gene products are required for normal wing disc development and for normal morphology of other larval organs. Genetic mosaics of these 56 mutant lines show clonal mutant phenotypes for 23 cell-viable mutations. These phenotypes result from altered cell parameters. Causal relationships between disc and clonal phenotypes are discussed.  相似文献   

3.
Proliferation in imaginal discs requires cell growth and is linked to patterning processes controlled by secreted cell-signalling molecules. To identify new genes involved in the control of cell proliferation we have screened a collection of P-lacW insertion mutants that result in lethality in the larval/pupal stages, and characterized a novel gene, patufet (ptuf). Inactivation of ptuf by a P element insertion in the 5′ untranslated region leads to aberrant imaginal disc morphology characterized by a reduction in mass of discs and disorganisation of disc cells where no folding or patterning can be detected. Moreover, apoptotic cells can be observed in these small and abnormal mutant discs. To examine the role of ptuf we have studied its clonal behaviour in genetic mosaics generated by mitotic recombination. The mutation causes reduced cell viability, smaller cell size and stops vein differentiation. Non-autonomous effects, such as abnormal differentiation of wild-type cells surrounding the clones, are also observed. We have cloned the ptuf gene of Drosophila melanogaster and found that it encodes a selenophosphate synthetase, which is the first identified in insects. Mutant flies transformed with the full-length cDNA show complete reversion of lethality and disc phenotype. Northern blot analysis and in situ hybridization indicate that the ptuf gene is expressed in imaginal discs as well as at different stages of development. The synthesis of selenoproteins by the selenophosphate synthetase, the role of selenoproteins in the maintenance of the oxidant/antioxidant balance of the cell and its possible implications in imaginal disc morphogenesis are discussed.  相似文献   

4.
The phenotypes of five different lethal mutants of Drosophila melanogaster that have small imaginal discs were analyzed in detail. From these results, we inferred whether or not the observed imaginal disc phenotype resulted exclusively from a primary imaginal disc defect in each mutant. To examine the validity of these inferences, we employed a multiple-allele method. Lethal alleles of the five third-chromosome mutations were identified by screening EMS-treated chromosomes for those which fail to complement with a chromosome containing all five reference mutations. Twenty-four mutants were isolated from 13,197 treated chromosomes. Each of the 24 was then tested for complementation with each of the five reference mutants. There was no significant difference in the mutation frequencies at these five loci. The stage of lethality and the imaginal disc morphology of each mutant allele were compared to those of its reference allele in order to examine the range of defects to be found among lethal alleles of each locus. In addition, hybrids of the alleles were examined for intracistronic complementation. For two of the five loci, we detected no significant phenotypic variation among lethal alleles. We infer that each of the mutant alleles at these two loci cause expression of the null activity phenotype. However, for the three other loci, we did detect significant phenotypic variation among lethal alleles. In fact, one of the mutant alleles at each of these three loci causes no detectable imaginal disc defect. This demonstrates that attempting to assess the developmental role of a gene by studying a single mutant allele may lead to erroneous conclusions. As a byproduct of the mutagenesis procedure, we have isolated two dominant, cold-sensitive mutants.  相似文献   

5.
Summary A method of isolating temperature-sensitive (ts) mutations blocking clone development, based on the analysis of twin spots produced by X-ray induced somatic recombination is reported. From this screen 10 ts mutations were recovered which caused an absence of the lethal-bearing clone at the restrictive temperature. Eight of these mutations were analyzed. Seven proved to be autonomous ts cell lethals and one was an autonomous ts mutation which reversibly affected cell division and growth of imaginal disc cells and growth of larval cells. The effects on development of one of the cell lethal mutations,l(1)ts-504, are described. Heat pulses (29°C) 24–72 hrs long caused a high frequency (up to 90%) of morphologically abnormal animals. The abnormalities observed were of two major kinds: deficiencies and duplications of imaginal disc derivatives. In addition, alterations of tarsal segmentations occurred. Heat pulses to larvae also delayed pupariation and eclosion by as much as four days. In general, longer pulses led to a greater delay in pupariation and eclosion and a higher frequency of deficiencies and duplications than shorter pulses. Exposure to restrictive temperature early in larval development delayed pupariation and resulted in mostly normal animals; exposure during the second and early third larval instar also delayed pupariation and led to a high frequency of duplications; exposure later in larval life, i.e. mid and late third larval instar, caused no delay in pupariation but led to a high frequency of deficiencies. These results can be explained by the occurrence of areas of cell death, which can be seen in the imaginal discs of larvae exposed to restrictive temperature by staining with trypan blue. This conclusion is further supported by the observation in gynandromorphs of duplications of female nonmutant tissue. These results are discussed in relation to current theories of pattern formation.  相似文献   

6.
Lethal mutations at the fat locus in Drosophila cause imaginal discs to continue to grow by cell proliferation far beyond their normal final size. During a greatly extended larval period, the overgrowing imaginal discs develop additional folds and lobes, but retain a single-layered epithelial structure. In the wing disc, the additional lobes originate in the proximal fold area, and in the extra tissue the cells are less columnar than normal. Mutant disc cells lack zonulae adherents as well as associated microtubules and microfilaments, and they show an abnormal distribution and reduced density of gap junctions. The effect on growth is disc-autonomous as shown by transplantation experiments. The overgrown imaginal discs retain the ability to differentiate adult cuticular structures, as shown by metamorphosis of discs after transplantation into wild-type larval hosts and by the ability of some mutant animals to develop to the pharate adult stage. The structures differentiated by mutant discs show many abnormalities including ingrowths, outgrowths, separated cuticular vesicles, and areas of reversed bristle polarity; some of these abnormalities suggest that the mutations interfere with cell adhesion as well as the control of cell proliferation. The fat locus is located in cytogenetic interval 24D5.6-7, and 18 alleles are known including spontaneous, chemically induced, X-ray-induced, and dysgenic mutations.  相似文献   

7.
Summary Twenty-seven late larval or early pupal lethal mutations were isolated for the X-chromosome, some of which showed structural and/or functional deficiencies of the imaginal discs. The mutants were grouped according to the size and morphology of their discs as follows: 1. discs normal: 18 mutants. 2. discs small: 2 mutants. 3. discs degenerate: 4 mutants. 4. discless: 1 mutant. 5. discs heterogeneous: 2 mutants. Preliminary characterization of the mutants included a study of disc morphology, puparium formation and pupal molt, in vivo and in vitro evagination of the imaginal discs, autonomy of the mutation in the disc tissue (differentiation after transplantation and gynander mosaicism test). Possible relations between disc morphology and the former characteristics are discussed.  相似文献   

8.
The lethal(3)discs overgrown (dco) locus of Drosophila melanogaster, located on the third chromosome at cytogenetic position 100A5,6-100B1,2, is necessary for normal development and growth control in the imaginal discs of the larva. Three recessive lethal alleles (dco2, dco3, and dco18) in heteroallelic combinations and one allele (dco3) when homozygous cause the imaginal discs to continue to grow beyond the normal disc-intrinsic limit during an extended larval period. Some degeneration also occurs in the overgrowing discs. The discs overgrow even when transplanted early in their development into wild-type hosts, whereas normal discs stop growth at about the normal final size under such conditions, indicating that the overgrowth is a disc-autonomous effect of the mutations. During overgrowth the imaginal discs retain their single-layered epithelial structure except near regions of degeneration, and they differentiate into disc-appropriate but abnormal adult structures when transplanted into wild-type larval hosts. When the mutant larvae are reared under certain conditions a small percentage develop to the pharate adult stage, and these animals show a characteristic syndrome of abnormalities including swollen leg segments with many extra bristles, small or missing eyes, duplicated antennae and palpi, and separated vesicles of cuticle. A fourth recessive lethal allele (dcole88), when homozygous or in heteroallelic combination with the overgrowth alleles, causes the imaginal discs to degenerate, producing a "discless" phenotype. Gap junction-mediated communication was assayed by observing the intercellular transfer of injected fluorescein complexon (dye coupling). Dye coupling in the imaginal discs of the dco genotypes that cause overgrowth was dramatically reduced at 4 days after egg laying (AEL) compared with wild-type controls. Coupling was more normal although still significantly reduced at 7-8 and 12-14 days AEL. In c43hs1, another disc overgrowth mutant, the imaginal disc cells also showed very reduced dye coupling at 4 days and incomplete coupling at 9 days. In contrast, discs from wild-type larvae, two other imaginal disc overgrowth mutants, and a cell death mutant showed extensive dye coupling at all stages tested. Electron microscopic morphometry revealed a reduction in gap-junction length per unit lateral plasma membrane length in dco3/dco18 and c43hs1 wing discs, although not in dco2/dco3, compared with wild-type wing discs. The results suggest that gap-junctional cell communication may be involved in the cell interactions that limit cell proliferation in vivo.  相似文献   

9.
Null mutations at the polyhomeotic locus of Drosophila produce a complex phenotype during embryogenesis, which includes death of the ventral epidermis, misregulation of homeotic and segmentation gene expression, and global misrouting of CNS axons. It is shown here, through the use of mosaic analyses, double mutant combinations, and in vitro culture experiments, that all aspects of the phenotype with the exception of the axonal phenotype are cell autonomous. The changes in homeotic and segmentation gene expression in the CNS are not caused by death of the ventral epidermis, but are cell autonomous effects which most likely cause changes in neuronal cell identity. The axonal phenotype associated with ph mutations is also independent of epidermal cell death, but may be due to the nonautonomous effects of altered neuronal identities or to death or transformation of some as yet unidentified cell type. Despite the apparent autonomy of the ph mutation, mutant neurons can influence the development of adjacent wild-type neurons, presumably by depriving them of their normal fasciculation partners.  相似文献   

10.
We have carried out screens for lethal mutations on the second chromosome of Drosophila melanogaster that are associated with abnormal imaginal disc morphologies, particularly in the wing disc. From a collection of 164 P element-induced mutations with a late larva/pupa lethal phase we have identified 56 new loci whose gene products are required for normal wing disc development and for normal morphology of other larval organs. Genetic mosaics of these 56 mutant lines show clonal mutant phenotypes for 23 cell-viable mutations. These phenotypes result from altered cell parameters. Causal relationships between disc and clonal phenotypes are discussed. Received: 19 June 1997 / Accepted: 4 August 1997  相似文献   

11.
Limb development in the Drosophila embryo requires a pattern-forming system to organize positional information along the proximal–distal axis of the limb. This system must function in the context of the well characterized anterior–posterior and dorsal–ventral pattern-forming systems that are required to organize the body plan of the embryo. By genetic criteria the Distal-less gene appears to play a central role in limb development. Lack-of-function Distal-less mutations cause the deletion of a specific subset of embryonic peripheral sense organs that represent the evolutionary remnants of larval limbs. Distal-less activity is also required in the imaginal discs for the development of adult limbs. This requirement is cell autonomous and region specific within the developing limb primordium. Production of genetically mosaic imaginal discs, in which clones of cells lack Distal-less activity, indicates the existence of an organized proximal–distal positional information in very young imaginal disc primordia. We suggest that this graded positional information may depend on the activity of the Distal-less gene.  相似文献   

12.
Proliferation in imaginal discs requires cell growth and is linked to patterning processes controlled by secreted cell-signalling molecules. To identify new genes involved in the control of cell proliferation we have screened a collection of P-lacW insertion mutants that result in lethality in the larval/pupal stages, and characterized a novel gene, patufet (ptuf). Inactivation of ptuf by a P element insertion in the 5′ untranslated region leads to aberrant imaginal disc morphology characterized by a reduction in mass of discs and disorganisation of disc cells where no folding or patterning can be detected. Moreover, apoptotic cells can be observed in these small and abnormal mutant discs. To examine the role of ptuf we have studied its clonal behaviour in genetic mosaics generated by mitotic recombination. The mutation causes reduced cell viability, smaller cell size and stops vein differentiation. Non-autonomous effects, such as abnormal differentiation of wild-type cells surrounding the clones, are also observed. We have cloned the ptuf gene of Drosophila melanogaster and found that it encodes a selenophosphate synthetase, which is the first identified in insects. Mutant flies transformed with the full-length cDNA show complete reversion of lethality and disc phenotype. Northern blot analysis and in situ hybridization indicate that the ptuf gene is expressed in imaginal discs as well as at different stages of development. The synthesis of selenoproteins by the selenophosphate synthetase, the role of selenoproteins in the maintenance of the oxidant/antioxidant balance of the cell and its possible implications in imaginal disc morphogenesis are discussed. Received: 22 August 1997 / Accepted: 9 September 1997  相似文献   

13.
Recessive lethal mutations in the fat locus of Drosophila cause hyperplastic, tumor-like overgrowth of larval imaginal discs, defects in differentiation and morphogenesis, and death during the pupal stage. Clones of mutant cells induced by mitotic recombination demonstrate that the overgrowth phenotype is cell autonomous. Here we show that the fat locus encodes a novel member of the cadherin gene superfamily: an enormous transmembrane protein of over 5000 amino acids with a putative signal sequence, 34 tandem cadherin domains, four EGF-like repeats, a transmembrane domain, and a novel cytoplasmic domain. Two recessive lethal alleles contain alterations in the fat coding sequence, and the dominant fat allele, Gull, contains an insertion of a transposable element in the 33rd cadherin domain. Thus, this novel member of the cadherin gene superfamily functions as a tumor suppressor gene and is required for correct morphogenesis.  相似文献   

14.
How cells acquiring mutations in tumor suppressor genes outcompete neighboring wild-type cells is poorly understood. The phosphatidylinositol 3-kinase (PI3K)–phosphatase with tensin homology (PTEN) and tuberous sclerosis complex (TSC)-target of rapamycin (TOR) pathways are frequently activated in human cancer, and this activation is often causative of tumorigenesis. We utilized the Gal4-UAS system in Drosophila imaginal primordia, highly proliferative and growing tissues, to analyze the impact of restricted activation of these pathways on neighboring wild-type cell populations. Activation of these pathways leads to an autonomous induction of tissue overgrowth and to a remarkable nonautonomous reduction in growth and proliferation rates of adjacent cell populations. This nonautonomous response occurs independently of where these pathways are activated, is functional all throughout development, takes place across compartments, and is distinct from cell competition. The observed autonomous and nonautonomous effects on tissue growth rely on the up-regulation of the proteoglycan Dally, a major element involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our findings indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. During normal development, the PI3K/PTEN and TSC/TOR pathways play a major role in sensing nutrient availability and modulating the final size of any developing organ. We present evidence that Dally also contributes to integrating nutrient sensing and organ scaling, the fitting of pattern to size.  相似文献   

15.
To explore the effects of cell death on pattern formation in the developing imaginal discs of Drosophila melanogaster, I have isolated a number of cell-autonomous temperature-sensitive lethal mutants. Sex-linked temperature-sensitive lethals were screened for cell-autonomy by scoring the survival of lethal-bearing clones in genetic mosaics. The mutant with the strongest effect on clone viability gave rise to a high frequency of structural deficiencies and duplications in the derivatives of the eye-antennal discs, when subjected to pulse-treatments at the nonpermissive temperature during the late second and third instars. The patterns produced were nonrandom, with some structures showing a tendency to become deficient, and others a tendency to duplicate. Duplicated structures were only found in heads in which other structures were missing. Genetic tests identified the lethal as a point mutation at the suppressor-of-forked locus. Recombination, and complementation tests with a small duplication of this region showed that a second mutational lesion is in all probability not involved in the generation of abnormal patterns in the imaginal discs. It is therefore proposed that the cell-lethal action of the mutant is sufficient to account for phenotypic effects described. According to this hypothesis, cell death primarily causes deficiencies, and duplications occur as a response of the discs to injury. In agreement with this, it was found that in gynandromorphs, pattern duplications can be found in wild-type tissue in the presence of lethal tissue in the same disc. Thus, a cell-autonomous lethal may affect the process of pattern formation in a nonautonomous way.  相似文献   

16.
Recessive mutations (dppdisk) in one region of the decapentaplegic (dpp) gene of Drosophila, which codes for a transforming growth factor-beta homolog, cause loss of distal parts from adult appendages. Different dppdisk alleles cause effects of different severity, the milder alleles removing distal parts and the more severe alleles removing progressively more proximal structures. In the wing disc derivatives, the most extreme dppdisk genotype removes the entire wing and leaves only a thorax fragment. We show that structures are lost in these mutants as a result of massive apoptotic cell death in the corresponding regions of the imaginal discs during the mid-third larval instar. The remaining disc fragments do not regenerate when cultured alone in the growth-permissive environment of the adult abdomen, but they can be made to regenerate by coculturing them with appropriate fragments of wild-type wing discs. This nonautonomous development is interpreted as showing that a product of dpp+, presumably the TGF-beta homolog, is secreted by the normal cells and can rescue the mutant cells in the mixed tissue.  相似文献   

17.

Background

Most human cancers originate from epithelial tissues and cell polarity and adhesion defects can lead to metastasis. The Polycomb-Group of chromatin factors were first characterized in Drosophila as repressors of homeotic genes during development, while studies in mammals indicate a conserved role in body plan organization, as well as an implication in other processes such as stem cell maintenance, cell proliferation, and tumorigenesis. We have analyzed the function of the Drosophila Polycomb-Group gene polyhomeotic in epithelial cells of two different organs, the ovary and the wing imaginal disc.

Results

Clonal analysis of loss and gain of function of polyhomeotic resulted in segregation between mutant and wild-type cells in both the follicular and wing imaginal disc epithelia, without excessive cell proliferation. Both basal and apical expulsion of mutant cells was observed, the former characterized by specific reorganization of cell adhesion and polarity proteins, the latter by complete cytoplasmic diffusion of these proteins. Among several candidate target genes tested, only the homeotic gene Abdominal-B was a target of PH in both ovarian and wing disc cells. Although overexpression of Abdominal-B was sufficient to cause cell segregation in the wing disc, epistatic analysis indicated that the presence of Abdominal-B is not necessary for expulsion of polyhomeotic mutant epithelial cells suggesting that additional POLYHOMEOTIC targets are implicated in this phenomenon.

Conclusion

Our results indicate that polyhomeotic mutations have a direct effect on epithelial integrity that can be uncoupled from overproliferation. We show that cells in an epithelium expressing different levels of POLYHOMEOTIC sort out indicating differential adhesive properties between the cell populations. Interestingly, we found distinct modalities between apical and basal expulsion of ph mutant cells and further studies of this phenomenon should allow parallels to be made with the modified adhesive and polarity properties of different types of epithelial tumors.  相似文献   

18.
 More than 50 genes have been identified in Drosophila by loss-of-function mutations that lead to overgrowth of specific tissues. Loss-of-function mutations in the lethal giant larvae, discs large, or brain tumor genes cause neoplastic overgrowth of larval brains and imaginal discs. In the present study, the growth and metastatic potential of tumors resulting from mutations in these genes were quantified. Overgrown brains and imaginal discs were transplanted into adults and β-galactosidase accumulation was used as a marker to identify donor cells. Mutations in these three genes generated tumors with similar metastatic patterns. For brain tumors, the metastatic index (a measure we defined as the fraction of hosts that acquired secondary tumors normalized for the amount of primary tumor growth) of each of the three mutants was similar. Analysis of cell proliferation in mutant brains suggests that the tumors arise from a population of several hundred cells which represent only 1–2% of the cells in third instar larval brains. For imaginal disc tumors from lethal giant larvae and brain tumor mutants, it is shown for the first time that they can be metastatic and invasive. Primary imaginal disc tumors from lethal giant larvae and brain tumor mutants formed secondary tumors in 43 and 53% of the hosts, respectively, although the secondary tumors were, in general, smaller than the secondary tumors derived from primary brain tumors. Received: 18 August 1997 / Accepted: 16 October 1997  相似文献   

19.
20.
Optic morphology (Om) mutations in Drosophila ananassae map to at least 22 loci, which are scattered throughout the genome. Om mutations are all semidominant, neomorphic, nonpleiotropic, and associated with the insertion of a retrotransposon, tom. We have found that the Om(2D) gene encodes a novel protein containing histidine/proline repeats, and is ubiquitously expressed during embryogenesis. The Om(2D) RNA is not detected in wild-type eye imaginal discs, but is abundantly found in the center of the eye discs of Om(2D) mutants, where excessive cell death occurs. D. melanogaster flies transformed with the Om(2D) cDNA under control of the hsp70 promoter display abnormal eye morphology when heat-shocked at the third larval instar stage. These results suggest that the Om(2D) gene is not normally expressed in the eye imaginal discs, but its ectopic expression, induced by the tom element, in the eye disc of third instar larvae results in defects in adult eye morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号