首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competition binding curves, using [125I-acetyl-His1]PACAP-27 as radioligand and dose-effect curves of adenylate cyclase activation in human SUP-T1 lymphoblastic membranes showed that PACAP-27 and PACAP-38 stimulate the enzyme through a single class of helodermin-preferring VIP receptors with the following order of potency: helodermin = [acetyl-His1]PACAP-27 greater than PACAP-38 greater than PACAP-27 greater than VIP. PACAP (6-27) (Ki 0.5-0.8 microM) and [Des-His1, Asn3]PACAP-27 (Ki 1-2 microM) acted as competitive antagonists. Using a series of 13 PACAP-27 analogues and fragments and three VIP analogues, we identified positions 1, 2, 3, 9 and 13 in PACAP-27 as being of importance for high-affinity binding. Thus, we added further evidence for considering that the present helodermin-preferring VIP receptors, when compared to a majority of VIP receptors and PACAP receptors, exhibit an original specificity pattern.  相似文献   

2.
Pituitary-adenylate-cyclase-activating polypeptide (PACAP) is a novel 38-amino-acid neuropeptide isolated from ovine hypothalamic tissues based on its activity of stimulating adenylate cyclase of rat pituitary cells. Binding sites for PACAP were studied in rat tissue membranes using a 27-amino-acid N-terminal derivative of PACAP [PACAP(1-27)] labelled with 125I. Particularly high specific binding sites of 125I-PACAP(1-27) were noted in the hypothalamus, brain stem, cerebellum and lung. Specific binding sites are also present in the pituitary gland, but at a lower concentration, and mainly in the anterior lobe. Very low concentration of 125I-PACAP(1-27)-binding sites were found in the colon, aorta and kidney membranes and no binding sites were detected in the pancreas and testis. Maximal binding of 125I-PACAP(1-27) was observed at pH 7.4. Interaction of 125I-PACAP(1-27) with its binding site was rapid, specific and saturable as well as time, pH and temperature dependent. PACAP(1-27) is more potent than PACAP in displacing the binding of 125I-PACAP(1-27) with brain membranes [concentration that inhibits 50% of the binding (IC50) = 7.45 +/- 1.52 nM and 11.45 +/- 3.65 nM, respectively; mean +/- SEM, n = 4] and lung membranes (IC50 = 4.41 +/- 0.87 nM and 10.68 +/- 3.09 nM, respectively). Vasoactive intestinal peptide displaced the binding of 125I-PACAP(1-27) in lung membrane (IC50 = 16.88 +/- 5.14 nM) but not in brain membranes. The equilibrium binding of 125I-PACAP(1-27) at 4 degrees C was characterized by a single class of binding site for the brain membrane with a dissociation constant (Kd) of 2.46 +/- 0.53 nM and a maximal binding capacity (Bmax) of 8.44 +/- 3.13 pmol/mg protein, but there were two classes of binding site for lung membranes with Kd of 1.02 +/- 0.51 nM and 5.19 +/- 0.99 nM, and Bmax of 2.84 +/- 0.72 pmol/mg protein and 9.13 +/- 1.89 pmol/mg protein, respectively. These findings suggest that subtypes of PACAP-binding sites exist and PACAP may have a physiological role in the hypothalamus/pituitary axis as well as in other regions of the brain and lung.  相似文献   

3.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel neuropeptide with regulatory and trophic functions that is related to vasoactive intestinal peptide (VIP). Here we investigate the expression of specific PACAP receptors (PAC1) and common VIP/PACAP receptors (VPAC1 and VPAC2) in the human hyperplastic prostate by immunological methods. The PAC1 receptor corresponded to a 60-KDa protein whereas the already known VPAC1 and VPAC2 receptors possessed molecular masses of 58 and 68 KDa, respectively. The heterogeneity of VIP/PACAP receptors in this tissue was confirmed by radioligand binding studies using [125I]PACAP-27 by means of stoichiometric and pharmacological experiments. At least two classes of PACAP binding sites showing different affinities could be resolved, with Kd values of 0.81 and 51.4 nM, respectively. The order of potency in displacing [125I]PACAP-27 binding was PACAP-27 approximately equal to PACAP-38 > VIP. PACAP-27 and VIP stimulated similarly adenylate cyclase activity, presumably through common VIP/PACAP receptors. The PAC1 receptor was not coupled to activation of either adenylate cyclase, nitric oxide synthase, or phospholipase C. It appears to be a novel subtype of PAC1 receptor because PACAP-27 (but not PACAP-38 or VIP) led to increased phosphoinositide synthesis, an interesting feature because phosphoinositides are involved via receptor mechanisms in the regulation of cell proliferation.  相似文献   

4.
N-terminally shortened analogs of the 27-amino-acid and 38-amino-acid forms of the pituitary-adenylate-cyclase-activating neuropeptide, PACAP(1-27) and PACAP(1-38), were synthesized by a solid-phase method. Systematic deletion of the first 13 amino acids of both PACAP was tested by evaluating their ability to occupy the specific and selective PACAP receptor of human neuroblastoma NB-OK-1 cell membranes and to stimulate adenylate cyclase or, when inactive per se, to inhibit PACAP-stimulated adenylate cyclase activity. For each peptide, the Kact (concentration required for half-maximal adenylate cyclase activation) or Ki [concentration required to shift the dose/response curve of PACAP(1-27) twofold to the right] was in good agreement with the corresponding IC50 [concentration inhibiting 50% of 125I-[AcHis1]PACAP(1-27) binding to membranes], suggesting interaction with the same homogeneous class of adenylate cyclase-coupled receptors. The deletion of the two first amino acids (His1 and Ser2) sufficed to decrease the affinity for receptors and to suppress the capacity to activate adenylate cyclase. The shorter fragments 3-27 and 3-38, 4-27 and 4-38, 5-27 and 5-38, 6-27 and 6-38, 7-27 and 7-38, 8-27 and 8-38, and 9-27 and 9-38 were all competitive antagonists of PACAP(1-27)-stimulated activity with the N-terminally shortened PACAP(1-38) derivatives being 4-30-fold more potent than the equivalent PACAP(1-27) derivatives. In this group PACAP(6-38) was the most potent antagonist (Ki 1.5 nM). Surprisingly, the N-terminally shorter fragments 10-27 and 10-38, 11-27 and 11-38, 12-27 and 12-38, 13-27 and 13-38, and 14-27 and 14-38 were again able to stimulate adenylate cyclase, the smallest fragments, PACAP(14-27) and PACAP(14-38), being the most potent and efficient (Kact 2 microM and 0.1 microM, respectively). In this group of agonists, PACAP(1-38) derivatives deleted at the N-terminus were also more potent than the equivalent PACAP(1-27) derivatives.  相似文献   

5.
[Acetyl-His1]VIP stimulated adenylate cyclase with higher potency than VIP in membranes from human SUP-T1 lymphoblasts and was used as an efficient radioiodinated ligand with low non-specific binding to evaluate the relationship between receptor occupancy and adenylate cyclase activation and the possible interference of peptide T (an epitope derived from HIV envelope protein gp120). Various peptides inhibited [125I-acetyl-His1]VIP binding and activated the enzyme, their order of potency being: helodermin greater than [acetyl-His1]VIP greater than VIP = PHI = [Phe1]VIP greater than [D-Phe2]VIP = [D-Ala4]VIP = [D-Phe4]PHI greater than or equal to [D-Phe4]VIP greater than [D-His1]VIP giving further support for the existence of a novel subtype of helodermin/VIP receptors. [D-Ala1]peptide T and VIP-(10-28) did not recognize the binding site and did not inhibit, even at high concentration, VIP - or VIP analogue - stimulated adenylate cyclase activities.  相似文献   

6.
The goal of these experiments was to identify and characterize binding sites in the rat hypothalamus for the peptide, pituitary adenylate cyclase activating polypeptide (PACAP). The 27 amino acid form of PACAP (PACAP27) was used as the radiolabeled ligand in these experiments. Binding of [125I]PACAP27 to hypothalamic membrane preparations was rapid, reversible on addition of unlabeled peptide, and at least partially regulated by GTP. Nonhydrolyzable GTP analogs, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), guanosine-5'-(2-thiodiphosphate) (GDP beta S), and guanylylimidophosphate (GppNHp) also displaced [125I]PACAP27 binding to hypothalamic membrane preparations in a dose-dependent manner. The order of potency for the three analogs was GTP gamma S greater than GDP beta S greater than GppNHp. Both forms of the peptide, PACAP27 and PACAP38, were highly potent in displacing bound [125I]PACAP27, whereas VIP or PACAP(1-23) were unable to displace binding at concentrations of up to 500 nM. Scatchard analysis of the PACAP27 and PACAP38 displacement curves revealed that the fit of both curves was consistent with a single class of high-affinity binding sites, although the site exhibited a greater affinity for PACAP38 compared with PACAP27 (PACAP27 Kd = 1452 +/- 59 pM; PACAP38 Kd = 175 +/- 13 pM; Bmax 23.2 +/- 1.1 pmol/mg protein). The possibility of the existence of a class of binding sites with extremely low affinity cannot be discounted. After covalent cross-linking of [125I]PACAP27 with its receptor, the molecular weights of the complexes were estimated by electrophoresis and autoradiography. A major band of 60 Kd was evident when membranes were incubated with VIP or PACAP(1-23). Previous incubation with unlabeled PACAP27 or PACAP38 eliminated visualization of this band. These results suggest that a specific, high-affinity binding site for PACAP27 is present in rat hypothalamus, and that this site shows a greater affinity for PACAP38 compared with PACAP27. The molecular weight of the peptide-receptor complex is 60,000 kDa, and therefore the receptor itself has an apparent molecular weight 57,000.  相似文献   

7.
We characterized highly selective receptors for PACAP, the pituitary adenylate cyclase activating peptide, in the tumoral acinar cell line AR 4-2J derived from the rat pancreas. PACAP, a novel hypothalamic peptide related to vasoactive intestinal peptide (VIP), was tested as the full natural 38-residue peptide (PACAP-38) and as an N-terminal amidated 27-residue derivative (PACAP-27). The binding sites showed considerable affinity for [125I]PACAP-27 (Kd = 0.4 nM) and PACAP-38, while their affinity for VIP and the parent peptide helodermin was 1000-fold lower. These receptors were coupled to adenylate cyclase, the potency of PACAP-38 and PACAP-27 (Kact = 0.2 nM) being much higher than that of VIP (Kact = 100 nM) and helodermin (Kact = 30 nM). Chemical cross-linking of [125I]PACAP-27 followed by SDS-PAGE and autoradiography revealed a specifically cross-linked peptide with an Mr of 68,000 (including 3000 for one PACAP-27 molecule).  相似文献   

8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) have opposite actions on the gallbladder; PACAP induces contraction, whereas VIP induces relaxation. Here, we have attempted to identify key residues responsible for their interactions with PACAP (PAC1) and VIP (VPAC) receptors in the guinea pig gallbladder. We synthesized PACAP-27/VIP hybrid peptides and compared their actions on isolated guinea pig gallbladder smooth muscle strips using isotonic transducers. [Ala4]- and [Val5]PACAP-27 were more potent than PACAP-27 in stimulating the gallbladder. In contrast, [Ala4, Val5]- and [Ala4, Val5, Asn9]PACAP-27 induced relaxation similarly to VIP. [Asn9]-, [Thr11]-, or [Leu13]PACAP-27 had 20-70% contractile activity of PACAP-27, whereas [Asn24,Ser25,Ile26]PACAP-27 showed no change in the activity. All VIP analogs, including [Gly4,Ile5,Ser9]VIP, induced relaxation. In the presence of a PAC1 receptor antagonist, PACAP(6-38), the contractile response to PACAP-27 was inhibited and relaxation became evident. RT-PCR analysis revealed abundant expressions of PAC1 receptor, "hop" splice variant, and VPAC1 and VPAC2 receptor mRNAs in the guinea pig gallbladder. In conclusion, PACAP-27 induces contraction of the gallbladder via PAC1/hop receptors. Gly4 and Ile5 are the key NH2-terminal residues of PACAP-27 that distinguish PAC1/hop receptors from VPAC1/VPAC2 receptors. However, both the NH2-terminal and alpha-helical regions of PACAP-27 are required for initiating gallbladder contraction.  相似文献   

9.
A new type of VIP receptor was characterized in human SUP-T1 lymphoblasts. The order of potency of unlabeled peptides, in the presence of [125I]helodermin, was: helodermin(1-35)-NH2 = helodermin(1-27)-NH2 greater than helospectin greater than VIP = PHI greater than [D-Ser2]VIP greater than [D-Asp3]VIP greater than [D-His1]VIP greater than or equal to [D-Ala4]VIP greater than or equal to secretin = GRF. This specificity was distinct from that of all VIP receptors described so far in that: (i) the affinity for helodermin (Kd = 3 nM) was higher than that of VIP (Kd = 15 nM) and PHI (Kd = 20 nM); and (ii) position 4 played an important role in ligand binding. The labeled sites were likely to be functional receptors as adenylate cyclase in crude lymphoblastic membranes (200-10,000 x g pellets) was stimulated by peptides, in the presence of GTP, with the following order of potency: helodermin(1-35)-NH2 greater than helodermin(1-27)-NH2 greater than helospectin = VIP = PHI.  相似文献   

10.
Molecular identification of the binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) and the effect of vasoactive intestinal peptide (VIP) on the specific binding sites for PACAP in rat cultured astrocyte membrane preparations were investigated. Affinity cross-linking of astrocyte membrane preparations with [125I]PACAP27 showed the presence of a 60 kDa radiolabeled ligand-receptor complex. The labeling of this band was completely abolished in the presence of 10(-8) M or higher concentrations of unlabeled PACAP27. The molecular weight of this binding protein was estimated to be 57 kDa assuming an equimolar interaction of ligand and receptor in the 60 kDa complex. The labeling of [125I]PACAP27 binding to this binding protein was partly reduced by the addition of 10(-6) M VIP, but not by 10(-8) M. In the binding assay, VIP displaced the specific binding of [125I]PACAP27 at 10(-7) M or a greater concentration. Displacement of [125I]PACAP27 binding by unlabeled PACAP27 was analyzed in the presence or absence of 10(-6) M VIP. VIP at 10(-6) M reduced the maximal binding capacity (Bmax) of the high affinity binding site for PACAP27 by about 50% but did not alter the Bmax of the low affinity binding site. The dissociation constants (Kd) for both the high and low affinity binding sites were unaltered. These results indicate that PACAP binds to a 57 kDa membrane protein with high affinity and that VIP, at much higher concentrations, binds to this same binding site, suggesting that VIP mimics the biological action of PACAP in astrocytes at high concentrations.  相似文献   

11.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide with 38 (PACAP38) or 27 (PACAP27) amino acid residues, structurally related to vasoactive intestinal peptide (VIP). Bovine brain membrane has a PACAP specific receptor interacting with both PACAP27 and PACAP38. Affinity-labeling of the receptor with [125I]PACAP27 identified a dominant band of Mr = 60 k. The labeling density of the 60 k band decreased in the presence of unlabeled PACAP27 or PACAP38, whereas the 60 k band remained in the presence of unlabeled VIP. Binding of [125I]PACAP27 to the membrane decreased in the presence of GTP and the labeling density of the 60 k band decreased concomitantly. The results indicate that bovine brain has a specific PACAP receptor, whose apparent molecular weight is 57 k (substracting the molecular weight of [125I]PACAP27 from 60 k).  相似文献   

12.
1. Based on radioligand binding and adenylate cyclase activation, functional receptors to vasoactive intestinal peptide(VIP)/helodermin, were shown to coexist with beta 2-adrenoceptors and prostaglandin receptors in membranes from a cultured cloned BL/VL3 cell line of murine T-cell lymphoma induced by a radiation leukemia virus. 2. The relative potency of VIP-related peptides to stimulate adenylate cyclase activity was: helodermin greater than VIP greater than peptide histidine isoleucinamide. Five VIP analogs inhibited 125I-iodo-VIP binding and stimulated adenylate cyclase activity, their decreasing order of potency being: VIP greater than [D-Asp3]VIP greater than [D-Ser2]VIP greater than [D-Ala4]VIP = [D-His1]VIP = [D-Phe2]VIP. [D-Phe2]VIP acted as a partial agonist (with an intrinsic activity of 0.1 as compared to that of VIP = 1.0) and competitively inhibited helodermin- and VIP-stimulated adenylate cyclase activity with a similar Ki (0.07-0.10 microM). These data suggest the existence, in this murine T-cell lymphoma, of VIP receptors of the 'helodermin-preferring' subtype that are coupled to adenylate cyclase.  相似文献   

13.
Vasoactive intestinal polypeptide (VIP)-immunoreactive nerves have been demonstrated in close association with the islets of Langerhans, and VIP has been shown to stimulate insulin and somatostatin secretion. Using [125I]VIP and membranes prepared from rat insulinoma (RIN) cells, i.e., the subclones m5F (m5F; mainly insulin-secreting) and 14B (14B; mainly somatostatin-secreting), it was found that VIP (10(-10)-10(-7) M) competitively inhibited the binding of [125I]VIP. A single class of high affinity binding sites with Kd values of 0.40 +/- 0.06 nM and 0.36 +/- 0.08 nM for m5F and 14B, respectively, with a corresponding number of binding sites (Bmax) of 163 +/- 20 and 254 +/- 51 fmol/mg protein was observed. The rank order of potency in inhibiting [125I]VIP binding was in both cell lines: VIP greater than helodermin greater than pituitary adenylate cyclase activating polypeptide 1-27 (PACAP27) greater than peptide histidine isoleucine (PHI) greater than secretin. VIP caused a dose-dependent increase in cAMP-formation in both m5F and 14B cell membranes with EC50 values of 3.0 and 3.5 nM, respectively, but VIP (1.10(-9)-3.10(-6) M) had no effect on insulin secretion (over 2 h) from the m5F cells. Thus, the data suggest that the VIP-receptors in these neoplastic rat cell lines, despite an apparent coupling to adenylate cyclase activity, seem to be functionally uncoupled to an effect on insulin secretion following an acute exposure to VIP.  相似文献   

14.
We investigated the ability of two forms of Pituitary Adenylate Cyclase Activating Polypeptide [PACAP-38, the 38 amino acid peptide isolated from ovine hypothalamus, and PACAP-27, a shorter N-terminal (1-27) amidated version] to interact with specific receptors in membranes from the human neuroblastoma cell line NB-OK. [125I]PACAP-27 bound rapidly and specifically to one class of high affinity sites (Kd 0.5 nM). VIP inhibited [125I]PACAP-27 binding 300- to 1000-fold less potently than PACAP-27 and PACAP-38. One microM PHI prevented tracer binding only partially and secretin, glucagon and GRF(1-29)NH2 were ineffective in this respect. PACAP-27 and PACAP-38 stimulated adenylate cyclase activity dose dependently and with similar efficacy (Kact 0.2-0.3 nM), this activation being compatible with the occupancy of specific high affinity PACAP receptor. VIP was markedly less potent and less efficient on this enzyme than PACAP. Chemical cross-linking of [125I]PACAP-27 followed by SDS-PAGE and autoradiography revealed specific cross-linking with a 68 kDa protein.  相似文献   

15.
Six vasoactive intestinal peptide (VIP) analogs inhibited [125I]iodo-VIP and [125I]iodo-helodermin binding to high-affinity VIP receptors in rat hepatic membranes. They also stimulated adenylate cyclase activity through these receptors, their decreasing order of potency being VIP greater than [D-Ala4]VIP greater than [D-Asp3]VIP greater than [D-Ser2]VIP greater than [D-His1]VIP greater than [D-Phe2]VIP greater than [D-Arg2]VIP, with the latter two peptides acting as partial agonists only. All VIP analogs tested on rat pancreatic membranes were able to stimulate adenylate cyclase, their order of potency being very similar to that observed on hepatic membranes. [D-Ser2]VIP, [D-His1]VIP, [D-Arg2]VIP and [D-Phe2]VIP were partial agonists with an intrinsic activity of, respectively, 0.8, 0.7, 0.35 and 0.09 as compared to that of VIP = 1.0. [D-Phe2]VIP competitively and selectively inhibited VIP-stimulated adenylate cyclase activity (Ki = 0.1 microM). On male rat anterior pituitary homogenates the order of potency of the peptides was VIP greater than [D-Ala4]VIP greater than [D-Asp3]VIP greater than [D-Ser2]VIP greater than [D-His1]VIP. [D-Ser2]VIP and [D-His1]VIP acted as partial agonists. Besides, [D-Phe2]VIP and [D-Arg2]VIP were inactive as well as unable to inhibit VIP-stimulated adenylate cyclase activity. These results indicated that (a) the efficacy of VIP receptor/effector coupling depended on the tissue tested; (b) the possibility exists to design a VIP antagonist by appropriate modification in the N-terminal moiety of the molecule.  相似文献   

16.
A high density (in the pmol/mg protein range) of specific functional receptors for PACAP (pituitary adenylate cyclase activating polypeptide) was observed in membranes from rat brain cortex, olfactory bulb, hypothalamus, hippocampus, striatum, cerebellum, pons and cervico-dorsal spinal cord, using [125I]PACAP-27 (PACAP 1-27). The tracer bound rapidly, specifically and reversibly. Competition binding curves were compatible with the coexistence, in the eight central nervous areas explored, of high and low affinity binding sites for PACAP-27 (Kd of 0.2 nM and 3.0 nM, respectively), and of only one class of binding sites for PACAP-38 (PACAP (1-38), Kd 0.2-0.9 nM). VIP inhibited only partially the binding of [125I]PACAP-27, and PHI, GRF(1-29)NH2 and secretin were ineffective at 1 microM. Chemical [125I]PACAP-27 cross-linking revealed a single specific 64 kDa protein species. In rat brain cortical membranes, saturation and competition experiments, using [125I]PACAP-38 as radioligand, indicated the presence of both high (Kd 0.13 nM) and low (Kd 8-10 nM) affinity binding sites for PACAP-38 and of low affinity (Kd 30 nM) binding sites for PACAP-27. These data taken collectively suggest the coexistence of PACAP-A receptors with a slight preference for PACAP-27 over PACAP-38 and of PACAP-B receptors that recognize PACAP-38 with a high affinity and PACAP-27 with low affinity. Both PACAP-27 and PACAP-38 stimulated adenylate cyclase with similar potency and efficacy. VIP was markedly less potent in this respect and also less efficient, except on cerebellar membranes.  相似文献   

17.
A novel neuropeptide with 38 residues (PACAP38) was isolated from ovine hypothalamic tissues using the pituitary adenylate cyclase activation in rat pituitary cell cultures as a parameter of the biological activity (Miyata et al, Biochem. Biophys. Res. Commun. 164, 567-574, 1989). From the side fractions obtained during the purification of PACAP38, a shorter form peptide with 27 residues corresponding to the N-terminal 27 amino acids of PACAP38 and amidated C-terminus was isolated and named as PACAP27. Synthetic PACAP27 showed a biological activity of adenylate cyclase stimulation comparable to PACAP38. Moreover PACAP27 which shows a considerable homology with vasoactive intestinal polypeptide (VIP) demonstrated a similar vasodepressor activity as VIP, but the adenylate cyclase stimulating activity was about 1000 times greater than VIP.  相似文献   

18.
Concentration-dependent inactivation of superoxide dismutase   总被引:1,自引:0,他引:1  
1. Vasoactive intestinal peptide (VIP) receptors were identified in crude rat hepatic membranes by 125I-labelled VIP binding and by the ability of VIP to stimulate adenylate cyclase activity. The specificity of these receptors was evaluated by the capacity of secretin, synthetic secretin analogues, and secretin fragments to inhibit 125I-labelled VIP binding and to stimulate adenylate cyclase. 2. The results were compatible with the existence of two classes of VIP binding sites that could be distinguished according to their affinity for VIP and their specificity. High-affinity sites were more specific for VIP as secretin was 175 times less potent than VIP for recognition of these sites while being only 33 times less potent than VIP for recognition of low-affinity sites. 3. Secretin analogues, monosubstituted in position 2, 3, 4 or 6 were less potent than secretin for adenylate cyclase stimulation as well as for the recognition of the two classes of receptors. [Val5]secretin was more potent than secretin and appeared definitely more VIP-like than secretin; [Ala4, Val5] and [D-Ala4,Val5]secretin were equipotent to secretin. 4. The fragment secretin (7-27) was unable to recognize VIP receptors and to stimulate adenylate cyclase. The substituted fragment [Gln9,Asn15]secretin (5-27) recognized these receptors with weak potency but could not activate the enzyme.  相似文献   

19.
Helodermin, a newly isolated peptide from Gila Monster venom, is structurally related to VIP and secretin. When used as radioligand, [125I]helodermin bound rapidly and reversibly to crude rat liver membranes, the dissociation being accelerated by GTP. Competition binding curves of [125I]helodermin and [125I]VIP with unlabelled peptides showed the following order of decreasing affinity: VIP greater than helodermin greater than secretin greater than hpGRF(1-29)-NH2. The shape of binding curves and of concurrent adenylate cyclase activation is compatible with the specific labelling, by [125I]helodermin, of a class of high-affinity VIP receptors that is capable to stimulate adenylate cyclase.  相似文献   

20.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide structurally related to vasoactive intestinal peptide (VIP) and glucagon like peptide-1(7-36) amide (tGLP-1) in its N-terminal portion. Therefore, their levels of insulinotropic potency were compared using an isolated rat pancreas perfusion. It was found that 0.1 nM PACAP (1-27) amide (PACAP27) significantly stimulated insulin release under a perfusate glucose concentration of 5.5 mM, whereas 1 nM PACAP27 did not under a perfusate glucose concentration of 2.8 mM. The potency was evaluated as tGLP-1 greater than PACAP27 greater than VIP. These results indicate that PACAP is a glucagon superfamily peptide which stimulates insulin release in a glucose dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号