首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-binding cassette transporter ABCA1 is essential for high density lipoprotein (HDL) formation and considered rate-controlling for reverse cholesterol transport. Expression of the Abca1 gene is under control of the liver X receptor (LXR). We have evaluated effects of LXR activation by the synthetic agonist T0901317 on hepatic and intestinal cholesterol metabolism in C57BL/6J and DBA/1 wild-type mice and in ABCA1-deficient DBA/1 mice. In wild-type mice, T0901317 increased expression of Abca1 in liver and intestine, which was associated with an approximately 60% rise in HDL. Biliary cholesterol excretion rose 2.7-fold upon treatment, and fecal neutral sterol output was increased by 150-300%. Plasma cholesterol levels also increased in treated Abca1(-/-) mice (+120%), but exclusively in very low density lipoprotein-sized fractions. Despite the absence of HDL, hepatobiliary cholesterol output was stimulated upon LXR activation in Abca1(-/-) mice, leading to a 250% increase in the biliary cholesterol/phospholipid ratio. Most importantly, fecal neutral sterol loss was induced to a similar extent (+300%) by the LXR agonist in DBA/1 wild-type and Abca1(-/-) mice. Expression of Abcg5 and Abcg8, recently implicated in biliary excretion of cholesterol and its intestinal absorption, was induced in T0901317-treated mice. Thus, activation of LXR in mice leads to enhanced hepatobiliary cholesterol secretion and fecal neutral sterol loss independent of (ABCA1-mediated) elevation of HDL and the presence of ABCA1 in liver and intestine.  相似文献   

2.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

3.
Chroni A  Kan HY  Shkodrani A  Liu T  Zannis VI 《Biochemistry》2005,44(10):4108-4117
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol and phospholipids, that were distributed in the very low density/intermediate density/low-density lipoprotein (VLDL/IDL/LDL) region, and normal triglycerides. The capacity of the mutant protein to promote ATP-binding cassette transporter A1- (ABCA1-) mediated cholesterol efflux and to activate lecithin:cholesterol acyltranserase (LCAT) was approximately 70-80% of the wild-type (WT) control. The phospholipid transfer protein (PLTP) activity of plasma containing the apoA-I[Delta(89-99)] mutant was decreased to 32% of the WT control. Similar analysis showed that the apoA-I[Delta(62-78)] deletion mutant in apoA-I-deficient mice caused combined hyperlipidemia characterized by increased triglycerides, cholesterol, and phospholipids in the VLDL/IDL region. There was enrichment of the VLDL/IDL with mutant apoA-I that resulted in reduction of in vitro lipolysis. The capacity of this mutant to promote ABCA1-mediated cholesterol efflux was normal, and the capacity to activate LCAT in vitro was reduced by 53%. The WT apoA-I and the apoA-I[Delta(62-78)] mutant formed spherical HDL particles, whereas the apoA-I[Delta(89-99)] mutant formed discoidal HDL particles. We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis.  相似文献   

4.
Using a sensitive real time fluorescent PCR assay, ABCA1 mRNA levels were induced by approximately 50-70-fold following 8Br-cAMP treatment of the RAW264 murine macrophage cell line, concomitant with the induction of cholesterol efflux to apoAI and HDL. A stably transfected ABCA1 antisense cDNA cell line was created, which led to approximately 50-70% reductions in ABCA1 mRNA levels in basal and 8Br-cAMP-treated cells, and diminished to the same extent the 8Br-cAMP-mediated efflux of cholesterol to apolipoprotein AI and HDL. These data demonstrate that ABCA1 is necessary for the cAMP-induced lipid efflux to both apoAI and HDL.  相似文献   

5.
Mice gene targeted for ATP-binding cassette transporter A1 (ABCA1; Abca1(-/-)) have been shown to have low-serum high-density lipoprotein and abnormal lung morphology. We examined alterations in the structure and function of lungs from -/- mice (DBA1/J). Electron microscopy of the diseased mouse lung revealed areas of focal disease confirming previous results (47). Lipid analysis of the lung tissue of -/- mice showed a 1.2- and 1.4-fold elevation in total phospholipid (PL) and saturated phosphatidylcholine, respectively, and a marked 50% enrichment in total cholesterol content predominantly due to a 17.5-fold increase in cholesteryl ester compared with wild type (WT). Lung surfactant in the -/- mice was characterized by alveolar proteinosis (161%), a slight increase in total PL (124%), and a marked increase in free cholesterol (155%) compared with WT. Alveolar macrophages were enriched in cholesterol (4.8-fold) due to elevations in free cholesterol (2.4-fold) and in cholesteryl ester (14.8-fold) compared with WT macrophages. More PL mass was cleared from the alveolar space of -/- mice lungs, measured using intratracheal installation of (3)H-PL liposomes. Compared with WT mice, the Abca1(-/-) mice demonstrated respiratory distress with rapid, shallow breathing. Thus the lungs of mice lacking ABCA1 protein demonstrated abnormal morphology and physiology, with alveolar proteinosis and cholesterol enrichment of tissue, surfactant, and macrophages. The results indicate that the activity of ABCA1 is important for the maintenance of normal lung lipid composition, structure, and function.  相似文献   

6.
Cholestasis is characterized by hypercholesterolemia and the appearance of an abnormal lipoprotein, lipoprotein X (LpX), in plasma. The mechanisms responsible for this cholestatic plasma lipid phenotype are not fully understood. We used ATP-binding cassette A1 (ABCA1)-/- and scavenger receptor class B type I (SR-BI)-/- mice to test the hypothesis that hepatic sinusoidal cholesterol transporters contribute to LpX formation and hypercholesterolemia during cholestasis. Bile-duct ligation (BDL) of both ABCA1-/- and SR-BI-/- mice, as well as their respective controls, induced a dramatic increase in plasma cholesterol and phospholipid concentrations. Plasma fractionation revealed the presence of LpX in plasma of cholestatic mice, irrespective of their genetic background. We observed that the presence of HDL before cholestasis, a decrease in the activity of LCAT, and an increase in VLDL synthesis were not required for hypercholesterolemia and lipoprotein modifications induced by obstructive cholestasis in mice. In addition, murine cholestasis resulted in increased hepatic cholesterol synthesis that may contribute to the higher plasma free cholesterol levels found during the early hours after BDL. Together these findings indicate that hypercholesterolemia and LpX formation associated with obstructive cholestasis are correlated with an increase in hepatic cholesterol synthesis and are independent of plasma HDL levels, LCAT activity, VLDL synthesis, and ABCA1 and SR-BI expression.  相似文献   

7.
8.
Tangier disease (TD) is an inherited disorder of lipid metabolism characterized by very low high density lipoprotein (HDL) plasma levels, cellular cholesteryl ester accumulation and reduced cholesterol excretion in response to HDL apolipoproteins. Molecular defects in the ATP binding cassette transporter 1 (ABCA1) have recently been identified as the cause of TD. ABCA1 plays a key role in the translocation of cholesterol across the plasma membrane, and defective ABCA1 causes cholesterol storage in TD cells. Not only cholesterol efflux, but also phospholipid efflux was shown to be impaired in TD cells. By use of thin layer chromatography, high performance liquid chromatography and time-of-flight secondary ion mass spectrometry, we characterized the cellular phospholipid content in fibroblasts from three homozygous TD patients. The cellular content of the major phospholipids was not found to be significantly altered in TD fibroblasts. However, the two phospholipids cardiolipin and lysocardiolipin, which make up minute amounts in normal cells, were at least 3–5-fold enriched in fibroblasts from TD subjects. A structurally closely related phospholipid (lysobisphosphatidic acid) has recently been shown to be enriched in Niemann–Pick type C, another lipid storage disorder. Altogether these data may indicate that the role of these phospholipids is a regulatory one rather than that of a bulk mediator of cholesterol solubilization in sterol trafficking and efflux.  相似文献   

9.
(1) Human HDL2 (d 1.070-1.125) and HDL3 (d 1.125-1.21) labelled with unesterified [14C]cholesterol, were incubated with a source of lecithin-cholesterol acyltransferase. For optimal activity, the reaction required the addition of albumin in excess, at least 3-times greater than the concentration of HDL-free cholesterol. Under such conditions, the reaction appeared saturable. HDL3 was found the most efficient substrate and the Vmax values expressed for 1.5 IU LCAT/ml and with an albumin/free cholesterol ratio of 3, were 8.3 nmol free cholesterol esterified/ml per h and 4.1 nmol/ml per h for HDL3 and HDL2, respectively. (2) HDL3 were modified in the presence of VLDL by inducing triacylglycerol lipolysis with a semipurified lipoprotein lipase from bovine milk. The newly formed HDL had gained free cholesterol and phospholipids, so that about 50% of these modified HDL, referred to as light-LIP-HDL3, were reisolated in the HDL2 density range. Light-LIP-HDL3 were enriched mostly in free cholesterol (+ 160%) and in phospholipid (+ 40%). Their reactivity towards LCAT was half-reduced compared to parent HDL3, which correlated well with a decrease in their phospholipid/free cholesterol molar ratio. Moreover, HDL3 artificially enriched in free cholesterol and exhibiting a comparable PL/FC behaved like lipolysis-modified HDL in their reactivity towards LCAT. (3) HDL3 were also modified by co-incubation with VLDL (post-VLDL-HDL3), or with VLDL and a source of lipid transfer protein (CET-HDL3). The latter treatment greatly affected the lipid composition of the core particle (-25% esterified cholesterol, +190% TG). In both cases, the moderate decreasing LCAT reactivity observed could be related to the phospholipid/free cholesterol ratio. Thus, like in artificial substrates, the lipid composition of the HDL surface may control the rate of LCAT-mediated cholesterol esterification.  相似文献   

10.
11.
Cavigiolio G  Shao B  Geier EG  Ren G  Heinecke JW  Oda MN 《Biochemistry》2008,47(16):4770-4779
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.  相似文献   

12.
ATP binding cassette transporter A1 (ABCA1) mediates the transport of phospholipids and cholesterol from cells to lipid-poor HDL apolipoproteins. Cholesterol loading of cells induces ABCA1, implicating cholesterol as its major physiologic substrate. It is believed, however, that ABCA1 is primarily a phospholipid transporter and that cholesterol efflux occurs by diffusion to ABCA1-generated phospholipid-rich apolipoproteins. Here we show that overexpression of ABCA1 in baby hamster kidney cells in the absence of apolipoproteins redistributed membrane cholesterol to cell-surface domains accessible to treatment with the enzyme cholesterol oxidase. The cholesterol removed by apolipoprotein A-I (apoA-I), but not by HDL phospholipids, was derived exclusively from these domains. ABCA1 overexpression also increased cholesterol esterification, which was prevented by addition of apoA-I, suggesting that some of the cell-surface cholesterol not removed by apolipoproteins is transported to the intracellular esterifying enzyme acyl-CoA:cholesterol acyltransferase. ABCA1 expression was essential for cholesterol efflux even when apolipoproteins had already acquired phospholipids during prior exposure to ABCA1-expressing cells.These studies show that ABCA1 redistributes cholesterol to cell-surface domains, where it becomes accessible for removal by apolipoproteins, consistent with a direct role of ABCA1 in cholesterol transport.  相似文献   

13.
AimsHigh-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised.MethodsReconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL + LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages.ResultsrHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux.ConclusionsIncreasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics.Non-standard abbreviations and acronyms: AAPH, 2,2′-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.  相似文献   

14.
The ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cellular unesterified cholesterol and phospholipid to lipid-poor apolipoprotein A-I. Chymase, a protease secreted by mast cells, selectively cleaves pre-beta-migrating particles from high density lipoprotein (HDL)(3) and reduces the efflux of cholesterol from macrophages. To evaluate whether this effect is the result of reduction of ABCA1-dependent or -independent pathways of cholesterol efflux, in this study we examined the efflux of cholesterol to preparations of chymase-treated HDL(3) in two types of cell: 1) in J774 murine macrophages endogenously expressing low levels of scavenger receptor class B, type I (SR-BI), and high levels of ABCA1 upon treatment with cAMP; and 2) in Fu5AH rat hepatoma cells endogenously expressing high levels of the SR-BI and low levels of ABCA1. Treatment of HDL(3) with the human chymase resulted in rapid depletion of pre-beta-HDL and a concomitant decrease in the efflux of cholesterol and phospholipid (2-fold and 3-fold, respectively) from the ABCA1-expressing J774 cells. In contrast, efflux of free cholesterol from Fu5AH to chymase-treated and to untreated HDL(3) was similar. Incubation of HDL(3) with phospholipid transfer protein led to an increase in pre-beta-HDL contents as well as in ABCA1-mediated cholesterol efflux. A decreased cholesterol efflux to untreated HDL(3) but not to chymase-treated HDL(3) was observed in ABCA1-expressing J774 with probucol, an inhibitor of cholesterol efflux to lipid-poor apoA-I. Similar results were obtained using brefeldin and gliburide, two inhibitors of ABCA1-mediated efflux. These results indicate that chymase treatment of HDL(3) specifically impairs the ABCA1-dependent pathway without influencing either aqueous or SR-BI-facilitated diffusion and that this effect is caused by depletion of lipid-poor pre-beta-migrating particles in HDL(3). Our results are compatible with the view that HDL(3) promotes ABCA1-mediated lipid efflux entirely through its lipid-poor fraction with pre-beta mobility.  相似文献   

15.
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRα/β expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.  相似文献   

16.
The mechanism of formation of high density lipoprotein (HDL) particles by the action of ATP-binding cassette transporter A1 (ABCA1) is not defined completely. To address this issue, we monitored efflux to apoA-I of phosphatidylcholine (PC), sphingomyelin (SM), and unesterified (free) cholesterol (FC) from J774 macrophages, in which ABCA1 is up-regulated, and investigated the nature of the particles formed. The various apoA-I/lipid particles appearing in the extracellular medium were separated by gel filtration chromatography. The presence of apoA-I in the extracellular medium led to the simultaneous formation of more than one type of poorly lipidated apoA-I-containing particle: there were 9- and 12-nm diameter particles containing approximately 3:1 and 1:1 phospholipid/FC (mol/mol), respectively, which were present together with 6-nm monomeric apoA-I. Removal of the C-terminal alpha-helix (residues 223-243) of apoA-I reduced phospholipid and FC efflux and prevented formation of the 9- and 12-nm HDL particles; the apoA-I variant formed larger particles that eluted in the void volume. FC loading of the J774 cells also led to the formation of larger apoA-I-containing particles that were highly enriched in FC. Besides creating HDL particles, ABCA1 mediated release of larger (20-450-nm diameter) FC-rich particles that were not involved in HDL formation and that are probably membrane vesicles. These particles contained 1:1 PC/SM in contrast to the HDL particles, which contained 2:1 PC/SM. This is consistent with lipid raft and non-raft plasma membrane domains being involved primarily in ABCA1-mediated vesicle release and nascent HDL formation, respectively.  相似文献   

17.
The LXR nuclear receptors are intracellular sensors of cholesterol excess and are activated by various oxysterols. LXRs have been shown to regulate multiple genes of lipid metabolism, including ABCA1 (formerly known as ABC1). ABCA1 is a lipid pump that effluxes cholesterol and phospholipid out of cells. ABCA1 deficiency causes extremely low high density lipoprotein (HDL) levels, demonstrating the importance of ABCA1 in the formation of HDL. The present work shows that the acetyl-podocarpic dimer (APD) is a potent, selective agonist for both LXRalpha (NR1H3) and LXRbeta (NR1H2). In transient transactivation assays, APD was approximately 1000-fold more potent, and yielded approximately 6-fold greater maximal stimulation, than the widely used LXR agonist 22-(R)-hydroxycholesterol. APD induced ABCA1 mRNA levels, and increased efflux of both cholesterol and phospholipid, from multiple cell types. Gas chromatography-mass spectrometry measurements demonstrated that APD stimulated efflux of endogenous cholesterol, eliminating any possible artifacts of cholesterol labeling. For both mRNA induction and stimulation of cholesterol efflux, APD was found to be more effective than was cholesterol loading. Taken together, these data show that APD is a more effective LXR agonist than endogenous oxysterols. LXR agonists may therefore be useful for the prevention and treatment of atherosclerosis, especially in the context of low HDL levels.  相似文献   

18.
Apolipoprotein A-I was purified from human high density lipoprotein and complexed with polyunsaturated phosphatidylcholine (PC) in deoxycholate (Lipostabil); the bile salt was removed subsequently by dialysis. The behavior of the resultant apoA-I/PC complexes was compared with that of Lipostabil in vitro and after injection into rabbits. In vivo apoA-I/PC complexes had the density of HDL throughout but had both alpha and pre beta electrophoretic mobility, the latter probably reflecting dissociation of apoA-I from PC. Lipostabil initially behaved like LDL but gradually acquired the density of HDL after incubation with plasma and in vivo. Both preparations increased plasma total phospholipids in normolipidemic rabbits to a similar extent, but, increments in HDL phospholipid were greater after apoA-I/PC complexes were injected. ApoHDL/PC complexes, prepared in a similar manner, appeared to promote efflux of cholesterol from perfused rabbit aortas in the presence of lecithin:cholesterol acyltransferase (LCAT) activity, consistent with a stimulatory effect on cholesterol mobilization. Injection of apoHDL/PC complexes into hyperlipidemic rabbits decreased plasma cholesterol but increased HDL cholesterol, whereas Lipostabil decreased both. These findings suggest that human apoA-I/PC complexes resemble HDL in their behavior more closely than does Lipostabil, and show that both types of liposome undergo modification upon interaction with plasma. It remains to be shown whether they possess any therapeutic potential.  相似文献   

19.
The pre-β HDL fraction constitutes a heterogeneous population of discoid nascent HDL particles. They transport from 1 to 25 % of total human plasma apo A-I. Pre-β HDL particles are generated de novo by interaction between ABCA1 transporters and monomolecular lipid-free apo A-I. Most probably, the binding of apo A-I to ABCA1 initiates the generation of the phospholipid-apo A-I complex which induces free cholesterol efflux. The lipid-poor nascent pre-β HDL particle associates with more lipids through exposure to the ABCG1 transporter and apo M. The maturation of pre-β HDL into the spherical α-HDL containing apo A-I is mediated by LCAT, which esterifies free cholesterol and thereby forms a hydrophobic core of the lipoprotein particle. LCAT is also a key factor in promoting the formation of the HDL particle containing apo A-I and apo A-II by fusion of the spherical α-HDL containing apo A-I and the nascent discoid HDL containing apo A-II. The plasma remodelling of mature HDL particles by lipid transfer proteins and hepatic lipase causes the dissociation of lipid-free/lipid-poor apo A-I, which can either interact with ABCA1 transporters and be incorporated back into pre-existing HDL particles, or eventually be catabolized in the kidney. The formation of pre-β HDL and the cycling of apo A-I between the pre-β and α-HDL particles are thought to be crucial mechanisms of reverse cholesterol transport and the expression of ABCA1 in macrophages may play a main role in the protection against atherosclerosis.  相似文献   

20.
Mutations in the A class of ATP-binding cassette transporters (ABCA) are causally implicated in three human diseases: Tangier disease (ABCA1), Stargadt's macular degeneration (ABCA4), and neonatal respiratory failure (ABCA3). Both ABCA1 and ABCA4 have been shown to transport lipids across cellular membranes, and ABCA3 may play a similar role in transporting pulmonary surfactant. Although the functions of the other 10 ABCA class transporters identified in the human genome remain obscure, ABCA7-transfected cells have been shown to efflux lipids in response to stimulation by apolipoprotein A-I. In an effort to elucidate the physiologic role of ABCA7, we generated mice lacking this transporter (Abca7-/- mice). Homozygous null mice were produced from intercrosses of heterozygous null mice at the expected Mendelian frequency and developed normally without any obvious phenotypic abnormalities. Cholesterol and phospholipid efflux stimulated by apolipoprotein A-I from macrophages isolated from wild type and Abca7-/- mice did not differ, suggesting that these activities may not be central to the physiological role of the transporter in vivo. Abca7-/- females, but not males, had significantly less visceral fat and lower total serum and high density lipoprotein cholesterol levels than wild type, gender-matched littermates. ABCA7 expression was detected in hippocampal and cortical neurons by in situ hybridization and in brain and white adipose tissue by Western blotting. Induction of adipocyte differentiation from 3T3 fibroblasts in culture led to a marked increase in ABCA7 expression. These studies suggest that ABCA7 plays a novel role in lipid and fat metabolism that Abca7-/- mice can be used to elucidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号