首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Muscat Governorate in the Sultanate of Oman is located along the sea of Oman and urban development has therefore had to occur in the intervening flat coastal plains and valleys along the coastline. The physical location of Muscat Governorate exposes the city to heavy rain and cyclones as they hit the coastline from the Sea of Oman. This underlying exposure plays a major role in the risk processes that lead to the emphasis of particular climate change risks including storm surge and rain-related flooding as experienced during Gonu Cyclone in 2007 and Phet Cyclone in 2010. For assessing flooding risk analysis, this study combined flooding hazard maps with major land use cover to quantify and validate the risks of flash flooding to urban area and infrastructures. Analysis identified substantial areas within the governorate exposure to high, medium, and low risks from extreme rainfall events that could lead to direct damages to roads, buildings, and other properties. This reinforces the need to protect and strengthen current defenses against these events as well as greater preparedness in disaster response.  相似文献   

2.
Aim To understand better the representation of arctic tundra vegetation by pollen data, we analysed pollen assemblages and pollen accumulation rates (PARs) in the surface sediments of lakes. Location Modern sediment samples were collected from seventy‐eight lakes located in the Arctic Foothills and Arctic Coastal Plain regions of northern Alaska. Methods For seventy of the lakes, we analysed pollen and spores in the upper 2 cm of the sediment and calculated the relative abundance of each taxon (pollen percentages). For eleven of the lakes, we used 210Pb analysis to determine sediment accumulation rates, and analysed pollen in the upper 10–15 cm of the sediment to estimate modern PARs. Using a detailed land‐cover map of northern Alaska, we assigned each study site to one of five tundra types: moist dwarf‐shrub tussock‐graminoid tundra (DST), moist graminoid prostrate‐shrub tundra (PST) (coastal and inland types), low‐shrub tundra (LST) and wet graminoid tundra (WGT). Results Mapped pollen percentages and multivariate comparison of the pollen data using discriminant analysis show that pollen assemblages vary along the main north–south vegetational and climatic gradients. On the Arctic Coastal Plain where climate is cold and dry, graminoid‐dominated PST and WGT sites were characterized by high percentages of Cyperaceae and Poaceae pollen. In the Arctic Foothills where climate is warmer and wetter, shrub‐dominated DST, PST and LST were characterized by high percentages of Alnus and Betula pollen. Small‐scale variations in tundra vegetation related to edaphic variability are also represented by the pollen data. Discriminant analysis demonstrated that DST sites could be distinguished from foothills PST sites based on their higher percentages of Ericales and Rubus chamaemorus pollen, and coastal PST sites could be distinguished from WGT sites based on their higher percentages of Artemisia. PARs appear to reflect variations in overall vegetation cover, although the small number of samples limits our understanding of these patterns. For coastal sites, PARs were higher for PST than WGT, whereas in the Arctic Foothills, PARs were highest in LST, intermediate in DST, and lowest in PST. Main conclusion Modern pollen data from northern Alaska reflect patterns of tundra vegetation related to both regional‐scale climatic gradients and landscape‐scale edaphic heterogeneity.  相似文献   

3.
Climate forecasts project a global increase in extreme weather events, but information on the consequences for ecosystems is scarce. Of particular significance for lakes are severe storms that can influence biogeochemical processes and biological communities by disrupting the vertical thermal structure during periods of stratification. An exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake. Wind speeds were among the most extreme on record. A suite of variables measured throughout the event consistently indicates that a cascade of processes pushed the clear-water lake into an exceptionally turbid state. Specifically, thermocline deepening by the storm-entrained cyanobacteria of a deep chlorophyll maximum located at about 8 m depth into the surface mixed layer. Released from light limitation, intense photosynthesis of the cyanobacteria boosted primary production, increased algal biomass, raised the pH and thus induced massive calcite precipitation to a level never observed within three decades of lake monitoring. As a consequence, water transparency dropped from 6.5 to 2.1 m, the minimum on record for 40 years, and the euphotic zone shrank by about 8 m for several weeks. These results show that cyanobacterial blooms not only are promoted by climate warming, but can also be triggered by extreme storms. Clear-water lakes developing a deep chlorophyll maximum appear to be particularly at risk in the future, if such events become more intense or frequent.  相似文献   

4.
Redistribution of sediments in three Swedish lakes   总被引:6,自引:5,他引:1  
Sedimentation and redistribution of fine sediments in three Swedish lakes of different character have been investigated using settling sediment traps. The bottom shear stress from wind generated waves are calculated and the extension of erodable bottom area is related to wind conditions. Wave induced erosion and deposition during and after cessation of storms in different parts of a lake are discussed theoretically. It is shown that a single one year storm may redistribute more bottom material than the accumulated resuspension caused by frequent but smaller wind events. The settling sediment trap deposition and the concentration of suspended solids are related to the extension of erodable bottom area of particular storms. It is found that in lakes where there are relatively large areas of erosion bottoms, resuspended material from the part of the lake most susceptible to strong winds of large fetch constitutes a major part of the settled material on deep bottoms.  相似文献   

5.
Although many climate predictions suggest that the frequency and intensity of large storm events might increase in the coming decades, few studies document the full impact of such events along their path. Here, we synthesize information on the impact of Hurricane Irene (formed August 21 2011) and Tropical Storm Lee (formed August 30, 2011) on erosion and sediment transport, lake metabolism, riparian hydrology and biogeochemistry, and stream water quality, from North Carolina to Maine. In almost all cases, these storms generated unprecedented changes in water quality (concentrations, loads), from tenfold increases in DOC and 100-fold increases in POC in Maryland, to 100-fold increases in TSS concentrations in Pennsylvania. Overbank flooding and up to 200-year streamflow events were recorded in New York and Vermont. In many cases, particulate loads (e.g. POC, PP, TSS) occurring during Irene and Lee represented more than 30% of the annual load. The dominance of particulate exports over solutes during Irene and Lee is consistent with the mobilization of normally immobile sediment pools, and massive erosion as reported at many locations across the Northeastern US. Several studies reported long lasting (> 1 year) effects of Irene and Lee on cyanobacterial blooms, erosion, or stream suspended sediment concentrations. However, this review also highlighted the lack of a consistent strategy in terms of methods, and measured water quality parameters. This strongly hinders our ability to fully assess the large-scale impact of such events on our environment, and ultimately their impact on our economy and society.  相似文献   

6.
The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.  相似文献   

7.
Coastal wetland stability and structure can be significantly affected by littoral processes when they are close to the shoreline. Thus, under certain conditions, the combination of shoreline dynamics and direct wave action during storms can influence the stability of marshes and vegetation community composition. This interaction between littoral dynamics and coastal wetlands is illustrated by analysing processes taking place in the Buda Island (Ebro delta, NW Spain), where a coastal lagoon very close to a retreating shoreline exists. Two main time scales have been found to be relevant for interaction of coastal processes with ecosystem dynamics, the decadal and episodic scales. The decadal scale determines the average trend in beach width and directly controls the potential loss of wetland surface. The episodic scale is linked to the occurrence of wave and storm surge events and it determines a pulsing stress in the ecosystem through flooding, being key parameters to determine their direct influence the intensity and repetition of these events.  相似文献   

8.
Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils.  相似文献   

9.
Vegetation structure, defined by the height, cover, and types of plants, is an important component of habitat suitability for plant species or communities. The identification of potential habitat is a crucial knowledge gap for endangered Atlantic Coastal Plain Flora (ACPF), a group of taxonomically unrelated plants that share common habitat types and are mostly found on lakeshores and wetlands in the Atlantic coastal region of North America. Our objectives were to assess spatial patterns and relationships of ACPF richness and structural diversity indices at different scales and positions along the lakeshore-to-forest gradient. We sampled 16 sites at 7 lakes in southwestern Nova Scotia using contiguous 20 × 20 cm quadrats along 20 m transects, perpendicular to the waterline, and in 5 × 5 m grids, between the lake and the forest edge. We measured the cover of 19 ACPF species and structural elements at different heights and calculated structural diversity indices using the Shannon index. Spatial patterns were assessed using one- and two-dimensional wavelet variance and covariance. The edge of the zone of high ACPF richness coincided with greater structural diversity at the lakeshore edge. Herbaceous ACPF richness was positively associated with structural diversity at finer scales and on lakeshores, but negatively associated at coarser scales and farther from the waterline. A strong association of structural diversity with ACPF richness suggests it could be used as a habitat indicator for ACPF on lakeshores, which could help the identification and conservation of potential suitable shorelines for ACPF populations in Nova Scotia.  相似文献   

10.
Although it has previously been considered to be a rare phenomenon, this paper provides evidence of eight occurrences of Atlantic cod in northern coastal saline lakes in Arctic Canada, Greenland, Norway, and Russia. Historic and current habitat features that are necessary for Atlantic cod to colonize and persist in Arctic meromictic lakes are discussed. Data analyses confirm that the persistence of Atlantic cod in Arctic lakes is a recurrent phenomenon, and these populations represent an important component of intraspecific biodiversity. Published in Russian in Voprosy Ikhtiologii, 2008, Vol. 48, No. 2, pp. 179–190. The text was submitted by the authors in English.  相似文献   

11.
Jason D. Stockwell  Jonathan P. Doubek  Rita Adrian  Orlane Anneville  Cayelan C. Carey  Laurence Carvalho  Lisette N. De Senerpont Domis  Gaël Dur  Marieke A. Frassl  Hans‐Peter Grossart  Bas W. Ibelings  Marc J. Lajeunesse  Aleksandra M. Lewandowska  María E. Llames  Shin‐Ichiro S. Matsuzaki  Emily R. Nodine  Peeter Nges  Vijay P. Patil  Francesco Pomati  Karsten Rinke  Lars G. Rudstam  James A. Rusak  Nico Salmaso  Christian T. Seltmann  Dietmar Straile  Stephen J. Thackeray  Wim Thiery  Pablo Urrutia‐Cordero  Patrick Venail  Piet Verburg  R. Iestyn Woolway  Tamar Zohary  Mikkel R. Andersen  Ruchi Bhattacharya  Josef Hejzlar  Nasime Janatian  Alfred T. N. K. Kpodonu  Tanner J. Williamson  Harriet L. Wilson 《Global Change Biology》2020,26(5):2756-2784
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.  相似文献   

12.
The sand dune habitats found on barrier islands and other coastal areas support a dynamic plant community while protecting areas further inland from waves and wind. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation, likely because of the interplay among plant succession, exposure, disturbance, and resource availability. However, surprisingly few long-term data are available describing dune vegetation patterns. A nine-year census of 294 plots on St. George Island, Florida suggests that the major climatic drivers of vegetation patterns vary with habitat. Community structure is correlated with the elevation, soil moisture, and percent soil ash of each 1 m2 plot. Major storms reduce species richness in all three habitats. Principle coordinate analysis suggests that changes in the plant communities through time are caused by climatic events: changes in foredune vegetation are correlated with temperature and summer precipitation, interdune vegetation with storm surge, and backdune vegetation with precipitation and storm surge. We suggest that the plant communities in foredune, interdune, and backdune habitats tend to undergo succession toward particular compositions of species, with climatic disturbances pushing the communities away from these more deterministic trajectories.  相似文献   

13.

Northern lakes are a source of greenhouse gases to the atmosphere and contribute substantially to the global carbon budget. However, the sources of methane (CH4) to northern lakes are poorly constrained limiting our ability to the assess impacts of future Arctic change. Here we present measurements of the natural groundwater tracer, radon, and CH4 in a shallow lake on the Yukon-Kuskokwim Delta, AK and quantify groundwater discharge rates and fluxes of groundwater-derived CH4. We found that groundwater was significantly enriched (2000%) in radon and CH4 relative to lake water. Using a mass balance approach, we calculated average groundwater fluxes of 1.2 ± 0.6 and 4.3 ± 2.0 cm day−1, respectively as conservative and upper limit estimates. Groundwater CH4 fluxes were 7—24 mmol m−2 day−1 and significantly exceeded diffusive air–water CH4 fluxes (1.3–2.3 mmol m−2 day−1) from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Isotopic signatures of CH4 were depleted in groundwaters, consistent with microbial production. Higher methane concentrations in groundwater compared to other high latitude lakes were likely the source of the comparatively higher CH4 diffusive fluxes, as compared to those reported previously in high latitude lakes. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for CH4 release across Arctic landscapes.

  相似文献   

14.
Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 M(w) 8.8 earthquake along the entire rupture zone (ca. 34-38°S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky sub-tidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems.  相似文献   

15.
Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. Most of the outbreaks of leptospirosis occur after floods caused by heavy rain in countries where Leptospira spp. are endemic. It has been believed that the overflow of seawater rarely causes outbreaks of leptospirosis because the leptospires are killed by salt water. On 8 November 2013, a storm surge caused by Super Typhoon Haiyan (Yolanda) inundated the entire coastal areas of Tacloban and Palo in Leyte, Philippines. The present study was carried out in order to determine whether the environmental leptospires in soil were able to survive after the storm surge in the affected areas. We collected 23 wet soil samples along the coastal areas of Tacloban and Palo 2 months after the storm surge. The samples were suspended in HEPES buffer, and the supernatants were cultured in liquid or semisolid Korthof''s medium supplemented with five antimicrobial agents to inhibit the growth of contaminants. Leptospires were isolated from primary cultures of 22 out of 23 samples. The DNA of pathogenic Leptospira species was detected in 11 samples (47.8%) by analysis of flaB by nested PCR. Eventually, two pathogenic Leptospira strains were isolated and showed the highest 16S rRNA gene sequence similarity to Leptospira kmetyi. When these isolates were experimentally mixed with soil, they were found to survive in seawater for 4 days. These results show the possibility that leptospires living in soil survived after the storm surge. Our findings may serve as a warning that when seawater inundates the land during a storm surge or a tsunami, an outbreak of leptospirosis could occur in the disaster-stricken area.  相似文献   

16.
Extreme weather events may be just as important as gradual trends for the long‐term trajectories of ecosystems. For alpine lakes, which are exposed to both exacerbated atmospheric warming and intense episodic weather events, future conditions might not be appropriately forecast by only climate change trends, i.e. warming, if extreme events have the potential to deflect their thermal and metabolic states from their seasonal ranges. We used high‐frequency monitoring data over three open‐water seasons with a one‐dimensional hydrodynamic model of the high‐altitude Lake Muzelle (France) to show that rainstorms or windstorms, notwithstanding their intensity, did not trigger long‐lasting consequences to the lake characteristics when light penetration into the lake was not modified. In contrast, storms associated with high turbidity input from the watershed (“turbid storms”) strongly modified the lacustrine hydrodynamics and metabolism for the rest of the open‐water season through reduced light penetration. The long‐lasting effects of turbid storms were related to the inputs and in‐lake persistence of very light glacial suspensoids from the watershed. The occurrence of the observed turbid storms was not related to the wind or rain intensities during the events. Instead, the turbid storms occurred after dry and atypically warm spells, i.e. meteorological conditions expected to be more frequent in this alpine region in the upcoming decades. Consequently, storm events, notwithstanding their intensity, are expected to strongly imprint the future ecological status of alpine lakes under climate warming.  相似文献   

17.
Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem‐scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear‐water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high‐frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for >4 weeks even though thermal stratification re‐established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm‐induced effects, such as inputs of terrestrial materials by increased catchment run‐off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear‐water lakes.  相似文献   

18.
Greenhouse gas fluxes from vegetated drained lake basins have been largely unstudied, although these land features constitute up to 47% of the land cover in the Arctic Coastal Plain in northern Alaska. To describe current and to better predict future sink/source activity of the Arctic tundra, it is important to assess these vegetated drained lake basins with respect to the patterns of and controls on gross primary production (GPP), net ecosystem exchange, and ecosystem respiration (ER). We measured CO2 fluxes and key environmental variables during the 2007 growing season (June through August) in 12 vegetated drained lake basins representing three age classes (young, drained about 50 years ago; medium, drained between 50 and 300 years ago; and old, drained between 300 and 2000 years ago, as determined by Hinkel et al., 2003) in the Arctic Coastal Plain. Young vegetated drained lake basins had both the highest average GPP over the summer (11.4 gCO2 m?2 day?1) and the highest average summer ER (7.3 gCO2 m?2 day?1), while medium and old vegetated drained lake basins showed lower and similar GPP (7.9 and 7.2 gCO2 m?2 day?1, respectively), and ER (5.2 and 4 gCO2 m?2 day?1, respectively). Productivity decreases with age as nutrients are locked up in living plant material and dead organic matter. However, we showed that old vegetated drained lakes basins maintained relatively high productivity because of the increased development of ice‐wedge polygons, the formation of ponds, and the re‐establishment of very productive species. Comparison of the seasonal CO2 fluxes and concomitant environmental factors over this chronosequence provides the basis for better understanding the patterns and controls on CO2 flux across the coastal plain of the North Slope of Alaska and for more accurately estimating current and future contribution of the Arctic to the global carbon budget.  相似文献   

19.
Stable coexistence of Arctic charr and whitefish does occur in a number of native lake fish communities in Scandinavia. Even so, whitefish introductions into Arctic charr lakes have resulted in serious decline and possibly local extinction of Arctic charr. In this article, we analyze the habitat use and diet of the two species in five Norwegian lakes differing in basin shape and environmental conditions. In two of the lakes, both species are native, and appear to live in a relatively stable coexistence. Here, whitefish mainly occupy the littoral and upper pelagic zone, while Arctic charr live in the deeper habitats. Diets are generally quite different in terms of the zooplankton species eaten. In the three other lakes, either whitefish or both species have been introduced. In the shallowest lake, habitat segregation is similar to that seen in the pristine lakes, although Arctic charr appears to be on the brink of extinction. In the remaining two lakes, however, Arctic charr dominates, and occurs in higher numbers than whitefish in all the habitats. Our observations indicate that coexistence of the two species in oligotrophic and relatively pristine lakes requires an extensive profundal zone to serve as a refugium for Arctic charr. If the littoral zone is rendered inaccessible or unprofitable for whitefish due to dominance of a third competitor or predator, or as a result of lake regulation, then Arctic charr may be the dominant species.  相似文献   

20.
Quantitative investigations and research conducted along the north coast of New South Wales, Australia are evaluated with respect to coastal processes, coastal alignment, meteorological data, dune dimensions, dune vegetative cover, development on the dunal area and dune management.The data available covered an assessment of the extent of dune instabilities, an assessment of long term coastline movements, a study of the effect of a cyclone and storm surge, and an assessment and evaluation of a phase of extreme coastline erosion. Specific situations are described and evaluated within the above context. The evaluations are used to determine the extent of coastal dune areas required to be designated as buffer zone in land use planning. The extent of the zone required is dependent upon expected magnitude of wave erosion. Magnitude of wave erosion was found to be proportional to the interaction of coastal processes during periods of extreme erosive factors and the beach dune characteristics for the particular section of coastline. It was found that man's influence on this natural interaction can be a dominating factor in determining beach dune characteristics and therefore the magnitude of wave erosion. — management of the beach dunal area to maintain an acceptable dynamic equilibrium of the beach dune line by a vegetated sand dune of specific dimensions is possible despite weather conditions, if a designated buffer zone is maintained.Presented at the Seventh International Biometeorological Congress, 17–23 August 1975, College Park, Maryland, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号