首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mykhaylenko  N.F.  Syvash  O.O.  Tupik  N.D.  Zolotareva  O.K. 《Photosynthetica》2004,42(1):105-110
Cyanobacteria Spirulina platensis and Nostoc linckia were grown in the presence of 5 mM and 50 mM glucose or 5 mM mannose, non-metabolisable glucose analogue that effectively triggers the repression of photosynthesis. Glucose evoked active cyanobacterial growth but chlorophyll (Chl) content decreased to some extent and porphyrins were excreted. The content of monogalactosyldiacylglycerol decreased in glucose-grown cyanobacteria and that of phosphatidylglycerol increased substantially. Mannose inhibited cyanobacteria growth as well as Chl synthesis, however, phosphatidylglycerol contents were higher than in respective control samples. In cyanobacterial cells glucose may not only inhibit photosynthetic processes, but also cause structural transformations of membranes which may be necessary for the activity of respiratory electron transport chain components under heterotrophic conditions.  相似文献   

2.
Phenolic compounds were determined in methanolic extract from the algal mass of aNostoc muscorum culture. Bioassays with two human pathogens,Candida albicans andStaphylococcus aureus indicated that algal phenolic compounds evoked significant growth inhibition for both species (89.1% and 88.2%, respectively). It is suggested that this strong inhibitory effect is of potential medicinal value.  相似文献   

3.
Fifty-four cyanobacterial strains of the genus Nostoc from different habitats were screened for acetylcholinesterase inhibitory activity. Water-methanolic extracts from freeze-dried biomasses were tested for inhibitory activity using Ellman's spectrophotometric method. Acetylcholinesterase inhibitory activity higher than 90% was found in the crude extracts of Nostoc sp. str. Luke?ová 27/97 and Nostoc ellipsosporum Rabenh. str. Luke?ová 51/91. Extracts from Nostoc ellipsosporum str. Luke?ová 52/91 and Nostoc linckia f. muscorum (Ag.) Elenk. str. Gromov, 1988, CALU-980 inhibited AChE activity by 84.9% and 65.3% respectively. Moderate AChE inhibitory activity (29.1–37.5%) was found in extracts of Nostoc linckia Roth. str. Gromov, 1962/10, CALU-129, Nostoc muscorum Ag. str. Luke?ová 127/97, Nostoc sp. str. Lhotsky, CALU-327 and Nostoc sp. str. Gromov, CALU-998. Extracts from another seven strains showed weak anti-AChE activities.

The active component responsible for acetylcholinesterase inhibition was identified in a crude extract of Nostoc sp. str. Luke?ová 27/97 using HPLC and found to occur in one single peak.  相似文献   

4.
A broad spectrum antimicrobial antibiotic is produced byNostoc muscorum (Lancashire Polytechnic Culture Collection 23) during the post-exponential phase of growth. The antibiotic inhibits the growth of bacteria, notably multiple-resistantStaphylococcus aureus, and a biocide resistantPseudomonas aeruginosa: fungi such as the biodeteriogens,Cladosporium herbarum andHormoconis resinae and yeasts such asCandida albicans andC. pseudotropicalis. The antibiotic has an apparent molecular weight of 2000–3000 Daltons. Production appears to be dependent upon the limitation of one or more nutrients in the medium. author for correspondence  相似文献   

5.
The physiological and biochemical changes during the adaptation of Nostoc muscorum to salt are accompanied by specific structural changes. Cells of Nostoc muscorum exposed to saline medium vary in size and envelope organization. There are also drastic changes in the intracellular organization of the thylakoidal assembly. The heterocysts exhibit a preferential tolerance to NaCl rather than mannitol. These findings suggest that Nostoc muscorum is equipped with a specific physiological capacity for NaCl tolerance.  相似文献   

6.
The preparation of a dry and powder fertilizer based on five nitrogen-fixing cyanobacterial strains is described. Tolypothrix tenuis and Nostoc muscorum resisted the drying and milling processes and showed a suitable recovering capacity in liquid media of different pH and salinity. Although a decrease in the cellular viability was observed with the storage time, the biomass of Nostoc muscorum retained viability for 16 months. The results were evaluated in terms of the retained viability index (RVI10) specifically designed for the fertilizer material.  相似文献   

7.
Enzymes that are regulated by the ferredoxin/thioredoxin system in chloroplasts — fructose-1,6-bisphosphatase (FBPase), sedoheptulose-1,7-bisphosphatase purified from two different types of photosynthetic prokaryotes (cyanobacteria, purple sulfur bacteria) and tested for a response to thioredoxins. Each of the enzymes from the cyanobacterium Nostoc muscorum, an oxygenic organism known to contain the ferredoxin/thioredoxin system, was activated by thioredoxins that had been reduced either chemically by dithiothreitol or photochemically by reduced ferredoxin and ferredoxin-thioredoxin reductase. Like their chloroplast counterparts, N. muscorum FBPase and SBPase were activated preferentially by reduced thioredoxin f. SBPase was also partially activated by thioredoxin m. PRK, which was present in two regulatory forms in N. muscorum, was activated similarly by thioredoxins f and m. Despite sharing the capacity for regulation by thioredoxins, the cyanobacterial FBPase and SBPase target enzymes differed antigenically from their chloroplast counterparts. The corresponding enzymes from Chromatium vinosum, an anoxygenic photosynthetic purple bacterium found recently to contain the NADP/thioredoxin sytem, differed from both those of cyanobacteria and chloroplasts in showing no response to reduced thioredoxin. Instead, C. vinosum FBPase, SBPase, and PRK activities were regulated by a metabolite effector, 5-AMP. The evidence is in accord with the conclusion that thioredoxins function in regulating the reductive pentose phosphate cycle in oxygenic prokaryotes (cyanobacteria) that contain the ferredoxin/thioredoxin system, but not in anoxygenic prokaryotes (photosynthetic purple bacteria) that contain the NADP/thioredoxin system. In organisms of the latter type, enzyme effectors seem to play a dominant role in regulating photosynthetic carbon dioxide assimilation.  相似文献   

8.
The ultrastructure of the heteromorphic cells (HMCs) of the cyanobacterium Nostoc muscorumCALU 304 grown in pure culture, monoculture, and a mixed culture with the Rauwolfiacallus tissue was studied. The comparative analysis of the cell surface of HMCs, the frequency of the generation of cell forms with defective cell walls (DCWFs), including protoplasts and spheroplasts, and the peculiarities of their ultrastructure under different growth conditions showed that, in the early terms of mixed incubation, the callus tissue acts to preserve the existing cyanobacterial DCWFs, but begins to promote their formation in the later incubation terms. DCWFs exhibited an integrity of their protoplasm and were metabolically active. It is suggested that structural alterations in the rigid layer of the cell wall may be due to the activation of the murolytic enzymes of cyanobacteria and the profound rearrangement of their peptidoglycan metabolism caused by the Rauwolfiametabolites diffused through the medium. These metabolites may also interfere with the functioning of the universal cell division protein of bacteria, FtsZ. In general, the Rauwolfiacallus tissue promoted the unbalanced growth of the cyanobacterium N. muscorumCALU 304 and favored its viability in the mixed culture. The long-term mixed cultivation substantially augmented the probability of the formation of L-forms of N. muscorumCALU 304.  相似文献   

9.
A comparative morphological study was conducted ofNostoc muscorum CALU 304 grown either as a pure culture on standard media or as a mixed culture withRauwolfia callus tissue on a medium for plant tissue cultivation. The interaction of the cyanobacterial and plant partners results in their spatial integration into aggregates of specific anatomy, which arise periodically during the mixed culture growth. The morphology of the cyanobacterial cells varies depending on their localization in the mixed aggregate. The degree of cyanobacterial heteromorphism increases with the time of growth of the association. Evidence of the plant origin of the factors inducing heteromorphic changes inN. muscorum was obtained, as well as evidence indicating that these factors can rapidly diffuse in agarized medium. A conclusion is inferred that the heteromorphic cells correspond to bacterial forms that appear during unbalanced growth as an adaptation to altered environmental conditions.  相似文献   

10.
A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.  相似文献   

11.
A NH4+ transport-defective mutant and a K+ transport-defective mutant of the cyanobacterium Nostoc muscorum were analysed with regard to percentage survival as a function of CsCl toxicity and Cs+ uptake activity. Neither survival nor Cs+ uptake was affected in either of the two mutants when compared with the wild type. The results indicate that the toxicity of Cs+ is determined at more than one cellular site in this organism.  相似文献   

12.
Antimicrobial activity of toxin produced by a freshwater bloom-forming cyanobacterium Microcystis aeruginosa has been studied. When tested against certain green algae, cyanobacteria, heterotrophic bacteria and fungi, the toxin inhibited growth of only green algae and cyanobacteria. The toxin has been partially purified employing Thin layer chromatography (TLC) and High-performance liquid chromatography (HPLC) techniques and appears to be microcystin-LR (leucine–arginine). Both crude and purified toxins showed toxicity to mice, the clinical symptoms in test mice being similar to those produced by hepatotoxin. Purified toxin at a concentration of 50 g ml–1 caused complete inhibition of growth followed by cell lysis in Nostoc muscorum and Anabaena BT1 after 6 days of toxin addition. Addition of toxin (25 g ml–1) to the culture suspensions of the Nostoc and Anabaena strains caused instant and drastic loss of O2 evolution. Furthermore a marked reduction (about 87%) in the 14CO2 uptake was also observed at a concentration of 50 g ml–1. Besides its inhibitory effects on photosynthetic processes, M. aeruginosa toxin (50 g ml–1) also caused 90% loss of nitrogenase activity after 8 h of its addition. Experiments performed with 14C-labelled toxin indicate that the toxin uptake by cyanobacterial cells occurs both in light and dark. These results demonstrate that the toxin is strongly algicidal and point to the possibility that it may have an important role in establishment and maintenance of toxic blooms of M. aeruginosa in freshwater ecosystems. The relative significance of the hepatotoxic effect and the algicidal effect of the toxin is discussed with reference both to survival and dominance of M. aeruginosa in nature.  相似文献   

13.
Summary In recent years, public concern about indoor mould growth has increased dramatically in the United States. In this study, lactic acid bacteria (LAB), which are known to produce antimicrobial compounds important in the biopreservation of food, were evaluated to determine if the same antimicrobial properties can be used to inhibit mould fungi that typically colonize wood. Based on biomass measurement, cell-free supernatants from Lactobacillus casei subsp. rhamnosus and Lactobacillus acidophilus grown in deMan Rogosa Sharpe (MRS) broth inhibited 95–100% growth of three mould fungi and one stain fungus associated with wood-based building materials. Lactic acid and four unknown compounds ⩽ kDa molecular weight were fractionated from the culture supernatant by thin layer chromatography and high-performance liquid chromatography. Antifungal activity, which was attributed to one or more unknown metabolites, was retained during heating and neutralization. A 1:2 dilution of L. casei supernatant inhibited 100% growth of all test fungi.  相似文献   

14.
Summary 5-Hydroxy indole-3-acetic acid promoted the growth (increase in dry weight) of Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum and Tolypothrix tenuis. 5-Hydroxy tryptamine stimulated the growth of Chlorogloea fritschii and Nostoc muscorum. Phenyl-acetic acid promoted the growth of Nostoc muscorum and Tolypothrix tenuis. Tryptophol stimulated the growth of Chlorogloea fritschii, it failed to stimulate the growth of Nostoc muscorum. Isatin promoted the growth of Anacystis nidulans and Chlorogloea fritschii 2, 3, 5-triidobenzoic acid inhibited the growth of Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum and Tolypothrix tenuis.  相似文献   

15.
Two capsulated, exopolysaccharide-producing cyanobacteria, Cyanospira capsulata and Nostoc PCC7936, were tested with regard to their metal removal capability by using copper as model metal. The experiments, carried out with the sole cyanobacterial biomass suspended in distilled water and confined into small dialysis tubings, showed that C. capsulata biomass is characterized by the best efficiency in metal removal, with a qmax (maximum amount of copper removed per biomass unit) of 96 ± 2 mg Cu(II) removed per g of protein in comparison with the value of 79 ± 3 of Nostoc PCC7936 biomass. The experimental data obtained with both cyanobacterial biomass best fit the Langmuir sorption isotherm. The sorption of copper started from the first minutes of contact with the metal and attained the equilibrium state, when no more copper removal was evident, after 5 and 6 hours, for C. capsulata and Nostoc PCC7936, respectively. The best efficiency in Cu(II) removal was obtained at pH 6.1–6.2, while the presence of Mg2+ or Ca2+ reduced copper removal capability of both species to 60–70% of their qmax. The results showed that the biomass of C. capsulata and Nostoc PCC7936 possesses a high affinity and a high specific uptake for copper, comparable with the best performances shown by other microbial biomass, and suggest the possibility to use the capsulated trichomes of the two cyanobacteria for the bioremoval of heavy metals from polluted water bodies.  相似文献   

16.
Microcystins are harmful hepatotoxins produced by many, but not all strains of the cyanobacterial genera Anabaena, Microcystis, Anabaena, Planktothrix, and Nostoc. Waterbodies have to be monitored for the mass development of toxic cyanobacteria; however, because of the close genetic relationship of microcystin-producing and non-producing strains within a genus, identification of microcystin-producers by morphological criteria is not possible. The genomes of microcystin-producing cells contain mcy genes coding for the microcystin synthetase complex. Based on the sequence information of mcy genes from Microcystis and Planktothrix, a primer pair for PCR amplification of a mcyA gene fragment was designed. PCR with this primer pair is a powerful means to identify microcystin-producing strains of the genera Anabaena, Microcystis, and Planktothrix. Moreover, subsequent RFLP analysis of the PCR products generated genus-specific fragments and allowed the genus of the toxin producer to be identified. The assay can be used with DNA from field samples.Abbreviations RFLP Restriction fragment length polymorphism - MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight spectrometry - HPLC High performance liquid chromatography  相似文献   

17.
The interaction between Trichoderma pseudokoningii (Rifai) 511, 2212, 741A, 741B and 453 and the arbuscular mycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG12 and Gigaspora rosea Nicolson & Schenck BEG9 were studied in vitro and in greenhouse experiments. All T. pseudokoningii strains inhibited the germination of G. mosseae and Gi. rosea except the strain 453, which did not affect the germination of Gi. rosea. Soluble exudates and volatile substances produced by all T. pseudokoningii strains inhibited the spore germination of G. mosseae. The germination of Gi. rosea spores was inhibited by the soluble exudates produced by T. pseudokoningii 2212 and 511, whereas T. pseudokoningii 714A and 714B inhibited the germination of Gi. rosea spores by the production of volatile substances. The strains of T. pseudokoningii did not affect dry matter and percentage of root length colonization of soybean inoculated with G. mosseae, except T. pseudokoningii 2212, which inhibited both parameters. However, all T. pseudokoningii strains decreased the shoot dry matter and the percentage of AM root length colonization of soybean inoculated with Gi. rosea. The saprotrophic fungi tested seem to affect AM colonization of root by effects on the presymbiotic phase of the AM fungi. No influence of AM fungi on the number of CFUs of T. pseudokoningii was found. The effect of saprotrophic fungi on AM fungal development and function varied with the strain of the saprotrophic species tested.  相似文献   

18.
Gorelova  O. A.  Kleimenov  S. Yu. 《Microbiology》2003,72(3):318-326
Five different artificial associations of cyanobacterial cells with the cells or tissues of nightshade and rauwolfia were studied. The associations grown on nitrogen-containing media produced heterocysts. Cyanobacterial cells in the associations retained their ability to take up combined nitrogen from the medium, to store it in the form of cyanophycin granules, and to use them in the process of symbiotic growth. The synthesis and degradation of cyanophycin granules in cyanobacterial cells were more active in the associations than in monocultures. In the symbiotic associations of Chlorogloeopsis fritschii ATCC 27193 with Solanum laciniatum cells and of Nostoc muscorum CALU 304 with the Rauwolfia serpentina callus, heterocysts were produced with a 3- to 30-fold higher cyanophycin content than in pure cyanobacterial cultures. In contrast, in the association of N. muscorum CALU 304 with the Solanum dulcamara callus, heterocysts were produced with a lower cyanophycin content than in the N. muscorum CALU 304 pure culture. The degradation of cyanophycin granules in N. muscorum CALU 304 cells grown in associations with plant tissues or cells was subjected to mathematical analysis. The activation of cyanophycin degradation and heterocyst differentiation in the associations N. muscorum CALU 304–R. serpentinaand C.fritschii–S. laciniatum was accompanied by an enhanced synthesis of the nitrogen-containing alkaloids in plant cells. The data obtained suggest that an integrated system of nitrogen homeostasis can be formed in symbiotic associations. Depending on the growth stage of an association, its plant member can either stimulate the accumulation of combined nitrogen in vegetative cyanobacterial cells in the form of cyanophycin granules, activate their degradation, or initiate the formation of heterocysts independently of the cyanobacterial combined nitrogen deprivation sensing-signaling pathway.  相似文献   

19.
Karni  Leah  Moss  Stephen J.  Tel-Or  Elisha 《Archives of microbiology》1984,140(2-3):215-217
Glutathione reductase activity was detected and characterized in heterocysts and vegetative cells of the cyanobacterium Nostoc muscorum. The activity of the enzyme varied between 50 and 150 nmol reduced glutathione· min-1·mg protein-1, and the apparent Km for NADPH was 0.125 and 0.200 mM for heterocysts and vegetative cells, respectively. The enzyme was found to be sensitive to Zn+2 ions, however, preincubation with oxidized glutathione rendered its resistance to Zn+2 inhibition. Nostoc muscorum filaments were found to contain 0.6–0.7mM glutathione, and it is suggested that glutathione reductase can regenerate reduced glutathione in both cell types. The combined activity of glutathione reductase and isocitrate dehydrogenase in heterocysts was as high as 18 nmol reduced glutathione·min-1·mg protein-1. A relatively high superoxide dismutase activity was found in the two cell types; 34.2 and 64.3 enzyme units·min-1·mg protein-1 in heterocysts and vegetative cells, respectively.We suggest that glutathione reductase plays a role in the protection mechanism which removes oxygen radicals in the N2-fixing cyanobacterium Nostoc muscorum.Abbreviations DTNB 5-5-dithiobis-(2-nitrobenzoic acid) - EDTA ethylenediaminetetra-acetic acid - GR glutathione reductase (EC1.6.4.2) - GSH reduced glutathione - GSSG oxidized glutathione - OPT O-phtaldialdehyde - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

20.
The species Trichoderma harzianum was analyzed as possible biocontrol agent of Alternaria alternata under different environmental conditions (water activity and temperature). The strains were analyzed macroscopically to obtain the Index of Dominance. The analysis was completed using two microscopic techniques. T. harzianum showed dominance on contact over A. alternata at all testing temperatures and water activities tested except at 0.95 a w and 15 °C, at which T. harzianum inhibited A. alternata at a distance. Biocontrol was governed by different mechanisms such as competition for space and nutrients, mycoparasitism, and possible antibiosis. Temperature and water activity significantly influenced fungal growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号