首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invariant features of the primary structure of 67 globins are analysed. These features may be responsible for the formation of the secondary structure of these proteins at the first stage of self-organization (in the unfolded chain). It is shown that in primary structures of globins there are 11 sites or regions of one to four residues in which at least one of the residues Asn, Asp, His, Pro, Ser or Thr is located in every globin (haem-linking His residues are excluded from these sites). An unambiguous correlation exists between the position of these regions and the secondary structure of globins: all these regions (except one) are located near the ends of helices in globins whose three-dimensional structure is known and the ends of all helices (except for the helix F) are coded by such regions. A decrease in the set of residues listed above leads to a sharp drop in the number of regions invariantly occupied by the residues, while an addition of residues such as Tyr and Gly to this set does not eventually increase the number of invariant regions. Five residues (Asn, Asp, His, Ser and Thr) of the six that code the ends of helical regions have polar side groups with a small number of degrees of freedom capable of forming hydrogen bonds with atoms of the backbone with a relatively small loss of entropy. One residue (Pro) has no NH-group and, therefore, has less chance of participating in the formation of hydrogen bonds between atoms of the backbone. This corroborates the hypothesis that competition between hydrogen bonds of short polar side groups and hydrogen bonds in the backbone is essential for the formation of the secondary structure in unfolded protein chains. Amino acid replacements in hydrophobic cores of the 67 globins are considered in the Appendix.  相似文献   

2.
The first three residues at the N terminus of the alpha-helix are called N1, N2 and N3. We surveyed 2102 alpha-helix N termini in 298 high-resolution, non-homologous protein crystal structures for N1, N2 and N3 amino acid and side-chain rotamer propensities and hydrogen-bonding patterns. We find strong structural preferences that are unique to these sites. The rotamer distributions as a function of amino acid identity and position in the helix are often explained in terms of hydrogen-bonding interactions to the free N1, N2 and N3 backbone NH groups. Notably, the "good N2" amino acid residues Gln, Glu, Asp, Asn, Ser, Thr and His preferentially form i, i or i,i+1 hydrogen bonds to the backbone, though this is hindered by good N-caps (Asp, Asn, Ser, Thr and Cys) that compete for these hydrogen bond donors. We find a number of specific side-chain to side-chain interactions between N1 and N2 or between the N-cap and N2 or N3, such as Arg(N-cap) to Asp(N2). The strong energetic and structural preferences found for N1, N2 and N3, which differ greatly from positions within helix interiors, suggest that these sites should be treated explicitly in any consideration of helical structure in peptides or proteins.  相似文献   

3.
Vijayakumar M  Qian H  Zhou HX 《Proteins》1999,34(4):497-507
A survey of 322 proteins showed that the short polar (SP) side chains of four residues, Thr, Ser, Asp, and Asn, have a very strong tendency to form hydrogen bonds with neighboring backbone amides. Specifically, 32% of Thr, 29% of Ser, 26% of Asp, and 19% of Asn engage in such hydrogen bonds. When an SP residue caps the N terminal of a helix, the contribution to helix stability by a hydrogen bond with the amide of the N3 or N2 residue is well established. When an SP residue is in the middle of a helix, the side chain is unlikely to form hydrogen bonds with neighboring backbone amides for steric and geometric reasons. In essence the SP side chain competes with the backbone carbonyl for the same hydrogen-bonding partner (i.e., the backbone amide) and thus SP residues tend to break backbone carbonyl-amide hydrogen bonds. The proposition that this is the origin for the low propensities of SP residues in the middle of alpha helices (relative to those of nonpolar residues) was tested. The combined effects of restricting side-chain rotamer conformations (documented by Creamer and Rose, Proc Acad Sci USA, 1992;89:5937-5941; Proteins, 1994;19:85-97) and excluding side- chain to backbone hydrogen bonds by the helix were quantitatively analyzed. These were found to correlate strongly with four experimentally determined scales of helix-forming propensities. The correlation coefficients ranged from 0.72 to 0.87, which are comparable to those found for nonpolar residues (for which only the loss of side-chain conformational entropy needs to be considered).  相似文献   

4.
A total of 19 835 polar residues from a data set of 250 non-homologous and highly resolved protein crystal structures were used to identify side-chain main-chain (SC-MC) hydrogen bonds. The ratio of the number of SC-MC hydrogen bonds to the total number of polar residues is close to 1:2, indicating the ubiquitous nature of such hydrogen bonds. Close to 56% of the SC-MC hydrogen bonds are local involving side-chain acceptor/donor ('i') and a main-chain donor/acceptor within the window i-5 to i+5. These short-range hydrogen bonds form well defined conformational motifs characterized by specific combinations of backbone and side-chain torsion angles. (a) The Ser/Thr residues show the greatest preference in forming intra-helical hydrogen bonds between the atoms O(gamma)(i) and O(i-4). More than half the examples of such hydrogen bonds are found at the middle of alpha-helices rather than at their ends. The most favoured motif of these examples is alpha(R)alpha(R)alpha(R)alpha(R)(g(-)). (b) These residues also show great preference to form hydrogen bonds between O(gamma)(i) and O(i-3), which are closely related to the previous type and though intra-helical, these hydrogen bonds are more often found at the C-termini of helices than at the middle. The motif represented by alpha(R)alpha(R)alpha(R)alpha(R)(g(+)) is most preferred in these cases. (c) The Ser, Thr and Glu are the most frequently found residues participating in intra-residue hydrogen bonds (between the side-chain and main-chain of the same residue) which are characterized by specific motifs of the form beta(g(+)) for Ser/Thr residues and alpha(R)(g(-)g(+)t) for Glu/Gln. (d) The side-chain acceptor atoms of Asn/Asp and Ser/Thr residues show high preference to form hydrogen bonds with acceptors two residues ahead in the chain, which are characterized by the motifs beta (tt')alphaR and beta(t)alpha(R), respectively. These hydrogen bonded segments, referred to as Asx turns, are known to provide stability to type I and type I' beta-turns. (e) Ser/Thr residues often form a combination of SC-MC hydrogen bonds, with the side-chain donor hydrogen bonded to the carbonyl oxygen of its own peptide backbone and the side-chain acceptor hydrogen bonded to an amide hydrogen three residues ahead in the sequence. Such motifs are quite often seen at the beginning of alpha-helices, which are characterized by the beta(g(+))alpha(R)alpha(R) motif. A remarkable majority of all these hydrogen bonds are buried from the protein surface, away from the surrounding solvent. This strongly indicates the possibility of side-chains playing the role of the backbone, in the protein interiors, to satisfy the potential hydrogen bonding sites and maintaining the network of hydrogen bonds which is crucial to the structure of the protein.  相似文献   

5.
The following three issues concerning the backbone dihedral angles of protein structures are presented. (1) How do the dihedral angles of the 20 amino acids depend on the identity and conformation of their nearest residues? (2) To what extent are the native dihedral angles determined by local (dihedral) potentials? (3) How to build a knowledge-based potential for a residue's dihedral angles, considering the identity and conformation of its nearest residues? We find that the dihedral angle distribution for a residue can significantly depend on the identity and conformation of its adjacent residues. These correlations are in sharp contrast to the Flory isolated-pair hypothesis. Statistical potentials are built for all combinations of residue triplets and depend on the dihedral angles between consecutive residues. First, a low-resolution potential is obtained, which only differentiates between the main populated basins in the dihedral angle density plots. Minimization of the dihedral potential for 125 test proteins reveals that most native alpha-helical residues (89%) and a large fraction of native beta-sheet residues (47%) adopt conformations close to their native one. For native loop residues, the percentage is 48%. It is also found that this fraction is higher for residues away from the ends of alpha or beta secondary structure elements. In addition, a higher resolution potential is built as a function of dihedral angles by a smoothing procedure and continuous functions interpolations. Monte Carlo energy minimization with this potential results in a lower fraction for native beta-sheet residues. Nevertheless, because of the higher flexibility and entropy of beta structures, they could be preferred under the influence of non-local interactions. In general, most alpha-helices and many beta-sheets are strongly determined by the local potential, while the conformations in loops and near the end of beta-sheets are more influenced by non-local interactions.  相似文献   

6.
Zhao S  Goodsell DS  Olson AJ 《Proteins》2001,43(3):271-279
We compiled and analyzed a data set of paired protein structures containing proteins for which multiple high-quality uncomplexed atomic structures were available in the Protein Data Bank. Side-chain flexibility was quantified, yielding a set of residue- and environment-specific confidence levels describing the range of motion around chi1 and chi2 angles. As expected, buried residues were inflexible, adopting similar conformations in different crystal structure analyses. Ile, Thr, Asn, Asp, and the large aromatics also showed limited flexibility when exposed on the protein surface, whereas exposed Ser, Lys, Arg, Met, Gln, and Glu residues were very flexible. This information is different from and complementary to the information available from rotamer surveys. The confidence levels are useful for assessing the significance of observed side-chain motion and estimating the extent of side-chain motion in protein structure prediction. We compare the performance of a simple 40 degrees threshold with these quantitative confidence levels in a critical evaluation of side-chain prediction with the program SCWRL.  相似文献   

7.
The high-resolution X-ray structures have been determined for ten complexes formed between bovine beta-trypsin and P1 variants (Gly, Asp, Glu, Gln, Thr, Met, Lys, His, Phe, Trp) of bovine pancreatic trypsin inhibitor (BPTI). All the complexes were crystallised from the same conditions. The structures of the P1 variants Asp, Glu, Gln and Thr, are reported here for the first time in complex with any serine proteinase. The resolution of the structures ranged from 1.75 to 2.05 A and the R-factors were about 19-20 %. The association constants of the mutants ranged from 1.5x10(4) to 1.7x10(13) M-1. All the structures could be fitted into well-defined electron density, and all had very similar global conformations. All the P1 mutant side-chains could be accomodated at the primary binding site, but relative to the P1 Lys, there were small local changes within the P1-S1 interaction site. These comprised: (1) changes in the number and dynamics of water molecules inside the pocket; (2) multiple conformations and non-optimal dihedral angles for some of the P1 side-chains, Ser190 and Gln192; and (3) changes in temperature factors of the pocket walls as well as the introduced P1 side-chain. Binding of the cognate P1 Lys is characterised by almost optimal dihedral angles, hydrogen bonding distances and angles, in addition to considerably lower temperature factors. Thus, the trypsin S1 pocket seems to be designed particularly for lysine binding.  相似文献   

8.
The importance of amino acid side-chains in helix stability has been investigated by making a series of mutations at the N-caps, C-caps and internal positions of the solvent-exposed faces of the two alpha-helices of barnase. There is a strong positional and context dependence of the effect of a particular amino acid on stability. Correlations have been found that provide insight into the physical basis of helix stabilization. The relative effects of Ala and Gly (or Ser) may be rationalized on the basis of solvent-accessible surface areas: burial of hydrophobic surface stabilizes the protein as does exposure to solvent of unpaired hydrogen bond donors or acceptors in the protein. There is a good correlation between the relative stabilizing effects of Ala and Gly at internal positions with the total change in solvent-accessible hydrophobic surface area of the folded protein on mutation of Ala----Gly. The relationship may be extended to the N and C-caps by including an extra term in hydrophilic surface area for the solvent exposure of the non-intramolecularly hydrogen-bonded main-chain CO, NH or protein side-chain hydrogen bonding groups. The requirement for solvent exposure of the C-cap main-chain CO groups may account for the strong preference for residues having positive phi and psi angles at this position, since this alpha L-conformation results in the largest solvent exposure of the C-terminal CO groups. Glycine in an alpha L-conformation results in the greatest exposure of these CO groups. Further, the side-chains of His, Asn, Arg and Lys may, with positive phi and psi-angles, form a hydrogen bond with the backbone CO of residue in position C -3 (residues are numbered relative to the C-cap). The preferences at the C-cap are Gly much greater than His greater than Asn greater than Arg greater than Lys greater than Ala approximately Ser approximately greater than Asp. The preferences at the N-cap are determined by hydrogen bonding of side-chains or solvent to the exposed backbone NH groups and are: Thr approximately Asp approximately Ser greater than Gly approximately Asn greater than Gln approximately Glu approximately His greater than Ala greater than Val much greater than Pro. These general trends may be obscured when mutation allows another side-chain to become a surrogate cap.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A method is presented that positions polar hydrogen atoms in protein structures by optimizing the total hydrogen bond energy. For this goal, an empirical hydrogen bond force field was derived from small molecule crystal structures. Bifurcated hydrogen bonds are taken into account. The procedure also predicts ionization states of His, Asp, and Glu residues. During optimization, sidechain conformations of His, Gln, and Asn residues are allowed to change their last χ angle by 180° to compensate for crystallographic misassignments. Crystal structure symmetry is taken into account where appropriate. The results can have significant implications for molecular dynamics simulations, protein engineering, and docking studies. The largest impact, however, is in protein structure verification: over 85% of protein structures tested can be improved by using our procedure. Proteins 26:363–376 © 1996 Wiley-Liss, Inc.  相似文献   

10.
Conformational energy computations were carried out on collagenlike triple-stranded conformations of several poly(tripeptide)s with the general structure CH3CO? (Gly? X? Y)3? NHCH3. The sequences considered had various amino acid residues in position X or Y of the central tripeptide, with either Pro or Ala as a neighbor, i.e., Gly-X-Pro, Gly-X-Ala, Gly-Pro-Y, and Gly-Ala-Y. Minimum-energy conformations were computed for the side chains, and their distributions were compared for the four sequences. The residues used were Abu (= α-aminobutyric acid), Leu, Phe, Ser, Asp, Asn, Val, Ile, and Thr. The conformational energy of a ? Ch2? CH3 side chain in Abu was mapped as a function of the dihedral angle χ1. Intrastrand interactions with neighboring residues do not affect the conformations of a side chain in position Y, and they have a minor effect on it in the X-Ala sequence, but they strongly restrict the conformational freedom of the side chain in the X-Pro sequence. Conversely, interstrand interactions do not affect side chains in position X, but they strongly restrict the conformational freedom of a side chain in position Y if there is a nearby Pro residue in a neighboring strand. Hydrogen bonds with the backbone can be formed in some conformations of long polar side chains, such as Asp, Asn, or Gln. All amino acid residues can be accommodated in collagen. Because of the interactions mentioned above, steric and energetic constraints can be correlated with observed preferences of certain amino acids for positions X or Y in collagen. Hence, these preferences may be explained, in part, in terms of differences in the conformational freedom of the side chains in the triple-stranded structure.  相似文献   

11.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

12.
S Oiki  V Madison  M Montal 《Proteins》1990,8(3):226-236
Channel proteins are transmembrane symmetric (or pseudosymmetric) oligomers organized around a central ionic pore. We present here a molecular model of the pore forming structures of two channel proteins with different primary structures and oligomeric size: the voltage-sensitive sodium channel and the nicotinic cholinergic receptor. We report low-energy arrangements of alpha-helical bundles calculated by semiempiricial potential energy functions and optimization routines and further refined using molecular dynamics. The ion-conducting pore is considered to be a symmetric or pseudosymmetric homooligomer of 3-5 amphipathic alpha-helices arranged such that the polar residues line a central hydrophilic pathway and the apolar residues face the hydrophobic bilayer interior. The channel lining exposes either charged (Asp, Glu, Arg, Lys) or polar-neutral (Ser, Thr) residues. A bundle of four parallel helices constrained to C4 symmetry, the helix axis aligned with the symmetry axis, and the helices constrained to idealized dihedral angles, produces a structure with a pore of the size inferred for the sodium channel protein (area approximately 16 A2). Similarly, a pentameric array optimized with constraints to maintain C5 symmetry and backbone torsions characteristic of alpha-helices adopts a structure that appears well suited to form the lining of the nicotinic cholinergic receptor (pore area approximately 46 A2). Thus, bundles of amphipathic alpha-helices satisfy the structural, energetic, and dynamic requirements to be the molecular structural motif underlying the function of ionic channels.  相似文献   

13.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

14.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

15.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

16.
N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.  相似文献   

17.
The mitochondrial phosphate transport protein (PTP) has six (A--F) transmembrane (TM) helices per subunit of functional homodimer with all mutations referring to the subunit of the homodimer. In earlier studies, conservative replacements of several residues located either at the matrix end (Asp39/helix A, Glu137/helix C, Asp236/helix E) or at the membrane center (His32/helix A, Glu136/helix C) of TM helices yielded inactive single mutation PTPs. Some of these residues were suggested to act as phosphate ligands or as part of the proton cotransport path. We now show that the mutation Ser158Thr, not part of a TM helix but located near the center of the matrix loop (Ile141--Ser171) between TM helices C and D, inactivates PTP and is thus also functionally relevant. On the other side of the membrane, the single mutation Glu192Asp at the intermembrane space end of TM helix D yields a PTP with 33% wild-type activity. We constructed double mutants by adding this mutation to the six transport-inactivating mutations. Transport was detected only in those with Asp39Asn, Glu137Gln, or Ser158Thr. We conclude that TM helix D can interact with TM helices A and C and matrix loop Ile141--Ser171 and that Asp39, Glu137, and Ser158 are not essential for phosphate transport. Since our results are consistent with residues present in all 12 functionally identified members of the mitochondrial transport protein (MTP) family, they lead to a general rule that specifies MTP residue types at 7 separate locations. The conformations of all the double mutation PTPs (except that with the matrix loop Ser158Thr) are significantly different from those of the single mutation PTPs, as indicated by their very low liposome incorporation efficiency and their requirement for less detergent (Triton X-100) to stay in solution. These dramatic conformational differences also suggest an interaction between TM helices D and E. The results are discussed in terms of TM helix movements and changes in the PTP monomer/dimer ratio.  相似文献   

18.
We investigated the possible role of residues at the Ccap position in an alpha-helix on protein stability. A set of 431 protein alpha-helices containing a C'-Gly from the Protein Data Bank (PDB) was analyzed, and the normalized frequencies for finding particular residues at the Ccap position, the average fraction of buried surface area, and the hydrogen bonding patterns of the Ccap residue side-chain were calculated. We found that on average the Ccap position is 70% buried and noted a significant correlation (R=0.8) between the relative burial of this residue and its hydrophobicity as defined by the Gibbs energy of transfer from octanol or cyclohexane to water. Ccap residues with polar side-chains are commonly involved in hydrogen bonding. The hydrogen bonding pattern is such that, the longer side-chains of Glu, Gln, Arg, Lys, His form hydrogen bonds with residues distal (>+/-4) in sequence, while the shorter side-chains of Asp, Asn, Ser, Thr exhibit hydrogen bonds with residues close in sequence (<+/-4), mainly involving backbone atoms. Experimentally we determined the thermodynamic propensities of residues at the Ccap position using the protein ubiquitin as a model system. We observed a large variation in the stability of the ubiquitin variants depending on the nature of the Ccap residue. Furthermore, the measured changes in stability of the ubiquitin variants correlate with the hydrophobicity of the Ccap residue. The experimental results, together with the statistical analysis of protein structures from the PDB, indicate that the key hydrophobic capping interactions between a helical residue (C3 or C4) and a residue outside the helix (C", C3' or C4') are frequently enhanced by the hydrophobic interactions with Ccap residues.  相似文献   

19.
Flavin mononucleotide (FMN)-binding proteins (FBPs) play an important role in the electron transport process in bacteria. In this study, the structures of the FBP from Desulfovibrio vulgaris (DvFBP) (Miyazaki F) were compared between those obtained experimentally by nuclear magnetic resonance (NMR) spectroscopy and those derived from molecular dynamics simulations (MDSs). A high-residue root of mean square deviation (RMSD) was observed in residues located at both sides of the wings (Gly22, Glu23, Asp24, Ala59, Arg60, Asp61, Glu62, Gly75, Arg76, Asn77, Gly78 and Pro79), while a low-residue RMSD was found in residues located in a hollow of the structure (Asn12, Glu13, Gly14, Val15, Val16, Asn30, Thr31, Trp32, Asn33, Ser34, Gly69, Ser70, Arg71 and Lys72). Inter-planar angles between the Phe7 and Iso and between the Phe7 and Trp106 residues were remarkably different between the MDS- and NMR-derived DvFBP structures. Distribution of the torsion angles around the covalent bonds in the aliphatic chain of FMN was similar in the MDS- and NMR-derived structures, except for those around the C1′–C2′ and C5′–O5′ bonds. Hydrogen bond formation between IsoO2 and the Gly49 or Gly50 peptide NH was formed in both the NMR- and MDS-derived structures. Overall, the MDS-derived structures were found to be considerably different from the NMR-derived structures, which must be considered when the photoinduced electron transfer in flavoproteins is analysed with MDS-derived structures.  相似文献   

20.
The optimized energies of seven beta-bends, repeating C5 and C7, and right- and left-handed alpha-helical conformations for each of eight tetrapeptides have been computed using empirical methods. Eight tetramers were selected: four helix-forming sequences with hydrophobic residues such as Val, Leu, Ile and Trp, and four helix-breaking sequences with hydrophilic residues such as Asp, Asn and Ser, as determined by their frequency of occurrence in beta turns in proteins. Analysis of the optimized conformations with energies less than or equal to 2.1 kcal/mol from the absolute minimum energy conformer for each tetramer reveals a correlation between low-energy conformations and those predicted from observed protein structures. These results show that energy calculations on small peptide fragments may be usefulin predicting protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号