首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

2.
Females can benefit from mate choice for male traits (e.g. sexual ornaments or body condition) that reliably signal the effect that mating will have on mean offspring fitness. These male‐derived benefits can be due to material and/or genetic effects. The latter include an increase in the attractiveness, hence likely mating success, of sons. Females can potentially enhance any sex‐biased benefits of mating with certain males by adjusting the offspring sex ratio depending on their mate's phenotype. One hypothesis is that females should produce mainly sons when mating with more attractive or higher quality males. Here we perform a meta‐analysis of the empirical literature that has accumulated to test this hypothesis. The mean effect size was small (r = 0.064–0.095; i.e. explaining <1% of variation in offspring sex ratios) but statistically significant in the predicted direction. It was, however, not robust to correction for an apparent publication bias towards significantly positive results. We also examined the strength of the relationship using different indices of male attractiveness/quality that have been invoked by researchers (ornaments, behavioural displays, female preference scores, body condition, male age, body size, and whether a male is a within‐pair or extra‐pair mate). Only ornamentation and body size significantly predicted the proportion of sons produced. We obtained similar results regardless of whether we ran a standard random‐effects meta‐analysis, or a multi‐level, Bayesian model that included a correction for phylogenetic non‐independence. A moderate proportion of the variance in effect sizes (51.6–56.2%) was due to variation that was not attributable to sampling error (i.e. sample size). Much of this non‐sampling error variance was not attributable to phylogenetic effects or high repeatability of effect sizes among species. It was approximately equally attributable to differences (occurring for unknown reasons) in effect sizes among and within studies (25.3, 22.9% of the total variance). There were no significant effects of year of publication or two aspects of study design (experimental/observational or field/laboratory) on reported effect sizes. We discuss various practical reasons and theoretical arguments as to why small effect sizes should be expected, and why there might be relatively high variation among studies. Currently, there are no species where replicated, experimental studies show that mothers adjust the offspring sex ratio in response to a generally preferred male phenotype. Ultimately, we need more experimental studies that test directly whether females produce more sons when mated to relatively more attractive males, and that provide the requisite evidence that their sons have higher mean fitness than their daughters.  相似文献   

3.
When individuals receive different returns from their reproductive investment dependent on mate quality, they are expected to invest more when breeding with higher quality mates. A number of studies over the past decade have shown that females may alter their reproductive effort depending on the quality/attractiveness of their mate. However, to date, despite extensive work on parental investment, such a differential allocation has not been demonstrated in fish. Indeed, so far only two studies from any taxon have suggested that females alter the quality of individual offspring according to the quality/attractiveness of their mate. The banggai cardinal fish is an obligate paternal mouth brooder where females lay few large eggs. It has previously been shown that male size determines clutch weight irrespective of female size in this species. In this study, I investigated whether females perform more courtship displays towards larger males and whether females allocate their reproductive effort depending on the size of their mate by experimentally assigning females to either large or small males. I found that females displayed more towards larger males, thereby suggesting a female preference for larger males. Further, females produced heavier eggs and heavier clutches but not more eggs when paired with large males. My experiments show that females in this species adjust their offspring weight and, thus, presumably offspring quality according to the size of their mate.  相似文献   

4.
Renewed debate over what benefits females might gain from producing extra‐pair offspring emphasizes the possibility that apparent differences in quality between within‐pair and extra‐pair offspring are confounded by greater maternal investment in extra‐pair offspring. Moreover, the attractiveness of a female''s social mate can also influence contributions of both partners to a reproductive attempt. Here, we explore the complexities involved in parental investment decisions in response to extra‐pair offspring and mate attractiveness with a focus on the female point of view. Adult zebra finches paired and reproduced in a colony setting. A male''s early‐life diet quality and his extra‐pair reproductive success were used as metrics of his mating attractiveness. Females paired with males that achieved extra‐pair success laid heavier eggs than other females and spent less time attending their nests than their mates or other females. Extra‐pair nestlings were fed more protein‐rich hen''s egg than within‐pair nestlings. Females producing extra‐pair offspring had more surviving sons than females producing only within‐pair offspring. Collectively, results show that females differentially allocate resources in response to offspring extra‐pair status and their social mate''s attractiveness. Females may also obtain fitness benefits through the production of extra‐pair offspring.  相似文献   

5.
Male Lepidoptera produce an ejaculate during copulation thatcontains both sperm and accessory gland nutrients and may functionas paternal investment and/or male mating effort Several studieshave examined how ejaculates function as paternal investment,but few have determined the influence of sperm competition onmale investment This study examines the effect of male bodysize on sperm precedence in the polyandrous butterfly Pierisnapi L. We used male body mass as an indicator of the size ofejaculate transferred and found that relative male size hada significant effect on paternity. The offspring of twice-matedfemales showed a low incidence of mixed paternity. Larger malesobtained the majority of fertilizations, and the degree of second-malesperm precedence was influenced by relative body size of matingmales. In general, second mates obtained fewer fertilizationsthe larger the size of the first mate. The interval betweenthe first and second mating was influenced by the size of thefirst male mate Females first mated to small males remated soonerthan females first mated to larger males Our results suggestthat large males may have a selective advantage over small maleswhen both a male's fertilization success and a female's refractoryperiod are influenced by the size of ejaculate transferred.Furthermore, the effect of male body size on the proportionof offspring sired lends support to the hypothesis that spermcompetition has played a major role in the evolution of ejaculatesize.  相似文献   

6.
The attractiveness hypothesis predicts that females produce broods with male-biased sex ratios when they mate with attractive males. This hypothesis presumes that sons in broods with male-biased sex ratios sired by attractive males have high reproductive success, whereas the reproductive success of daughters is relatively constant, regardless of the attractiveness of their sires. However, there is little direct evidence for this assumption. We have examined the relationships between offspring sex ratios and (1) sexual ornamentation of sons and (2) body size of daughters in broods from wild female guppies Poecilia reticulata. Wild pregnant females were collected and allowed to give birth in the laboratory. Body size and sexual ornamentation of offspring were measured at maturity. Our analysis revealed a significant positive correlation between offspring sex ratios (the proportion of sons per brood) and the total length as well as the area of orange spots of sons, two attributes that influence female mating preferences in guppies. The sex ratio was not associated with the body size of daughters. These results suggest that by performing adaptive sex allocation according to the expected reproductive success of sons and daughters, female guppies can enhance the overall fitness of their offspring.  相似文献   

7.
Although females may require only one mating to become inseminated, many female animals engage in costly mating with multiple males. One potential benefit of polyandrous mating is gaining parental investment from multiple males. We developed two game theoretic models to explore this possibility. Our first model showed that male care of multiple females' offspring evolves when male help substantially increases offspring fitness, future mating opportunity is limited, and group size is small. In our second model, we assumed that males invest in the offspring of former mates and evaluated the fitness consequences of female monogamous and polyandrous mating strategies. Females benefit only from limited polyandry, that is, mating with several males. Polyandry is discouraged because females must share male investment with other polyandrous females, and paternal care is likely to experience diminishing returns. Females may enhance their access to male investment by competing with rival females and monopolizing investment, however. The results support the argument that females can gain paternal investment by mating with several males in small social groups (e.g., dunnocks Prunella modularis). The results do not support the argument that females can gain paternal investment from pronounced multiple mating in large social groups, however, as observed in many primate species.  相似文献   

8.
The sex allocation hypothesis predicts that females manipulate the offspring sex ratios according to mate attractiveness. Although there is increasing evidence to support this prediction, it is possible that paternal effects may often obscure the relationship between female control of offspring sex ratios and male attractiveness. In the present study, we examined whether females played a primary role in the manipulation their offspring sex ratios based on male attractiveness, in the guppy Poecilia reticulata, a live‐bearing fish. We excluded the paternal effects by controlling the relative sexual attractiveness of the male by presenting them to the females along with a more attractive or less attractive stimulus male. The test male was perceived to be relatively more attractive by females when it was presented along with a less attractive stimulus male, or vice versa. Subsequently, test male was mated in two different roles (relatively more and less attractive) with two females. If females were responsible for offspring sex ratio manipulation, the sex ratio of the brood would be altered on the basis of the relative attractiveness of the test male. On the other hand, if males play a primary role in offspring sex ratio manipulation, the sex ratios would not differ with the relative attractiveness of the test male. We found that females gave birth to more male‐biased broods when they mated with test males in the attractive role than when they mated with males in the less attractive role. This finding suggests that females are responsible for the manipulation of offspring sex ratios based on the attractiveness of their mates.  相似文献   

9.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

10.
The differential allocation theory predicts that females should invest more in offspring produced with attractive partners, and a number of studies support this prediction in birds. Females have been shown to increase reproductive investment when mated to males showing elaborated sexual traits. However, mate attractiveness might also depend on the interaction between male and female genotypes. Accordingly, females should invest more in offspring sired by individuals that are genetically dissimilar or carry superior alleles. Here, we show in zebra finches (Taeniopygia guttata) that pairs of unfamiliar genetic brothers and sisters are less likely to reproduce in comparison with randomly mated pairs. Among the brother–sister pairs, those that attempted to breed laid smaller clutches and of lower total clutch mass. Our results provide the first experimental evidence that females adjust their reproductive effort in response to the genetic similarity of their partners. Importantly, these results imply a female ability to assess relatedness of a social mate without prior association.  相似文献   

11.
The attractiveness hypothesis predicts that females produce offspring with male-biased sex ratios when they mate with attractive males because their male offspring will inherit the paternal sexual attractiveness and may have high reproductive success. In this study, we examined the effect of the attractiveness of the male guppy Poecilia reticulata in terms of the conspicuousness of its orange spot patterns, important criteria affecting female choice in this species, on the offspring sex ratios. We found that food-manipulation treatment altered the conspicuousness of the orange spot patterns in a full-sibling male pair. When females were presented to these males, they showed a greater mate preference for males having brighter orange spots than for those having duller orange spots. Subsequently, half of the females were mated with the preferred males and the remaining females were mated with the less preferred males. When the females exhibited a greater preference for their mates, their offspring sex ratios were more male biased. These results appear to be consistent with the prediction of the attractiveness hypothesis. In the guppy, as male sexual attractiveness is heritable, the male-biased sex ratios of the broods of attractive males may be adaptive.  相似文献   

12.
Sexual selection is thought to favor the evolution of secondary sexual traits in males that contribute to mating success. In species where females mate with more than one male, sexual selection also continues after copulation in the form of sperm competition and cryptic female choice. Theory suggests that sperm competition should favor traits such as testes size and sperm production that increase a male's competitive fertilization success. Studies of experimental evolution offer a powerful approach for assessing evolutionary responses to variation in sexual selection pressures. Here we removed sexual selection by enforcing monogamy on replicate lines of a naturally polygamous horned beetle, Onthophagus taurus, and monitoring male investment in their testes for 21 generations. Testes size decreased in monogamous lines relative to lines in which sexual selection was allowed to continue. Differences in testes size were dependent on selection history and not breeding regime. Males from polygamous lines also had a competitive fertilization advantage when in sperm competition with males from monogamous lines. Females from polygamous lines produced sons in better condition, and those from monogamous lines increased their sons condition by mating polygamously. Rather than being costly for females, multiple mating appears to provide females with direct and/or indirect benefits. Neither body size nor horn size diverged between our monogamous and polygamous lines. Our data show that sperm competition does drive the evolution of testes size in onthophagine beetles, and provide general support for sperm competition theory.  相似文献   

13.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality.  相似文献   

14.
Since direct benefits are likely to be absent in the grasshopper Chorthippus biguttulus, indirect genetic benefits are a potential explanation for costly female preference. Choosy females may improve their fitness in terms of enhanced attractiveness of sons alone or additionally by improved viability of offspring. We tested the predictions of these two hypotheses by comparing attractiveness-related song traits and viability in offspring of attractive and unattractive grasshopper males. The experiment was conducted with larvae reared under semi natural lab conditions in one year and under natural conditions in the field in the following year. If reared under natural conditions no significant differences in viability and song traits between offspring of attractive and unattractive males could be found. Offspring reared in the lab produced calling songs with a significantly more exact song rhythm when sired by attractive males than offspring of unattractive males. Offspring of attractive males should thus have a theoretical advantage in mate choice, which, however, did not translate into higher attractiveness values in acoustic female choice experiments. Therefore our experiments could not resolve whether female choice in C. biguttulus evolved according to the sexy son hypothesis. Since viability in offspring of attractive males did not differ from offspring of unattractive males, “good genes” seems unlikely to be the underlying mechanism of female choice.  相似文献   

15.
Sexual selection theory predicts that paternal quality should drive female investment in progeny. We tested whether polyandrous female side-blotched lizards, Uta stansburiana, would adjust within-clutch progeny investment according to sire phenotypes. In two different years, polyandrous females selectively used sperm from larger sires to produce sons and used sperm from smaller sires to produce daughters. This cryptic sperm choice had significant effects on progeny survival to maturity that were consistent with sexually antagonistic effects associated with sire body size. Large sires produced sons with high viability and small sires produced daughters with high viability. These results are consistent with our previous findings that alleles for male body size have different fitness effects in male and female progeny. Breeding experiments in the laboratory indicate that results from the wild are more likely due to female choice than biased sperm production by males. Our results demonstrate highly refined gender-specific female choice for sperm and indicate that sire body size may signal the quality of sons or daughters that a sire will produce.  相似文献   

16.
We experimentally investigated the fitness consequences of female mate choice in order to test the relative importance of three competing but non-exclusive hypotheses for the maintenance of pronounced female mating preferences on leks: that females benefit directly; that they gain indirect Fisherian benefits by producing more attractive sons; or that they benefit indirectly because preferred males possess ''good genes'' that confer increased viability on their sons and daughters. We allowed lekking female sandflies, Lutzomyia longipalpis, to choose between males of varying attractiveness to females, and monitored the consequences for their own survival and reproductive success as well as for their offspring. In contrast to the predictions of the direct-benefits model, we found no clear sire effect on the fecundity or survival of the females themselves; females mating with more attractive males did survive longer after oviposition, but never long enough to undertake a second batch of egg laying. We also found no evidence that females gained good-genes benefits in terms of enhanced offspring survival. However, we did find that generally attractive males fathered sons who were then chosen when they in turn formed leks. Although not completely precluding other benefits, our results indicate that Fisherian benefits are at least partly responsible for maintaining female choice at L. longipalpis leks. These findings indicate the importance of testing all putative benefits concurrently in exploring the maintenance of female mate choice.  相似文献   

17.
Theory predicts that mate choice can lead to an increase in female fecundity if the secondary sexual traits used by females to assess male quality covary with the number of sperm transferred during copulation. Where females mate multiply, such a relationship between male attractiveness and ejaculate size may, additionally (or alternatively), serve to augment the effect of indirect selection by biasing paternity in favour of preferred males. In either case, a positive correlation between male attractiveness and the size of ejaculates delivered at copulation is predicted. To date, some of the most convincing (indirect) evidence for this prediction comes from the guppy, a species of fish exhibiting a resource-free mating system in which attractive males tend to have larger sperm reserves. We show that, during solicited copulations, male guppies with preferred phenotypes actually transfer more sperm to females than their less-ornamented counterparts, irrespective of the size of their initial sperm stores. Our results also reveal that, during coercive copulations, the relationship between ejaculate size and the male's phenotype breaks down. This latter result, in conjunction with our finding that mating speed--a factor under the female's control-is a significant predictor of ejaculate size, leads us to speculate that females may exert at least partial control over the number of sperm inseminated during cooperative matings.  相似文献   

18.
According to the good-genes hypothesis, females choose among males to ensure the inheritance of superior paternal genes by their offspring. Despite increasing support for this prediction, in some cases differential (non-genetic) maternal effects may obscure or amplify the relationship between paternal attractiveness and offspring quality. Artificial insemination controls such effects because it uncouples mate choice from copulation, therefore denying females the opportunity of assessing male attractiveness. We adopted this technique in the live-bearing fish Poecilia reticulata and examined whether paternal coloration was associated with the behavioural performance of newborn offspring. Sexually receptive virgin females were inseminated with sperm taken individually from donor males that exhibited high variation in the area of orange pigmentation, a trait known to influence female choice in the study population. Our analysis of offspring performance focused on the anti-predator behaviour of newborn fish, including schooling by sibling pairs, the response (swimming speed) of these fishes to a simulated avian predator, and the time taken for a naive investigator to capture the offspring. Although we found no significant effect of sire coloration on either schooling or swimming speed, our analysis revealed a significant positive association between sire coloration and the ability of newborn offspring to evade capture. This finding supports the view that at least one aspect of anti-predator behaviour in newborn offspring is influenced by sire genotype, which in turn is revealed by the expression of secondary sexual traits.  相似文献   

19.
Head ML  Hunt J  Brooks R 《Biology letters》2006,2(3):341-344
Differential allocation of reproductive effort towards offspring of attractive mates is a form of post-copulatory mate choice. Although differential allocation has been demonstrated in many taxa, its evolutionary implications have received little attention. Theory predicts that mate choice will lead to a positive genetic correlation between female preference and male attractiveness. This prediction has been upheld for pre-copulatory mate choice, but whether such a relationship between male attractiveness and female differential allocation exists has never been tested. Here, we show that both female pre-copulatory mate choice and post-copulatory differential allocation are genetically associated with male attractiveness in house crickets, Acheta domesticus. Daughters of attractive males mated sooner and laid more eggs when paired with larger males. These forms of mate choice are strongest in large females, suggesting that costs decrease with increasing female size. The genetic association between attractiveness and differential allocation suggests potential for differential allocation to become exaggerated by coevolutionary runaway processes in an analogous manner to pre-copulatory choice. Sexual selection is thus likely to be stronger than predicted by pre-copulatory choice alone.  相似文献   

20.
Multiple mating and sequential mate choice in guppies: females trade up   总被引:1,自引:0,他引:1  
The trade-up hypothesis outlines a behavioural strategy that females could use to maximize the genetic benefits to their offspring. The hypothesis proposes that females should be more willing to accept a mate when the new male encountered is a superior genetic source to previous mates. We provide a direct test of the trade-up hypothesis using guppies (Poecilia reticulata), and evaluate both behavioural and paternity data. Virgin female guppies were presented sequentially with two males of varying attractiveness, and their responsiveness to each male was quantified. Male attractiveness (ornamentation) was scored as the amount of orange coloration on their body. Females were generally less responsive to second-encountered males, yet responsiveness to second males was an increasing function of male ornamentation. These attractive second males also sired a greater proportion of the offspring. There was an overall tendency for last-male advantage in paternity, and this advantage was most exaggerated when the second male was more ornamented than the first. Finally, we found that our estimate of relative sperm number did not account for any significant variation in paternity. Our results suggest that female guppies may use pre-copulatory mechanisms to maximize the genetic quality of their offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号