首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Abstract: P0 glycoprotein, the major protein of PNS myelin, contains approximately 1 mol of covalently bound long-chain fatty acids. To determine the chemical nature of the fatty acid-protein linkage, P0 was labeled in rat sciatic nerve slices with [3H]palmitic acid and subsequently treated with various reagents. The protein-bound palmi-tate was released by incubation with the reducing agents dithiothreitol and 2-mercaptoethanol, and with 1 M hydrox-ylamine at pH 7.5. In addition, P0 was deacylated by treatment with 10 m M NaBH4 with the concomitant production of [3H]hexadecanol, indicating that the fatty acid is bound in a thioester linkage. This conclusion was supported further by the fact that deacylation with hydroxylamine generated free thiol groups, which were titrated with [14C]-iodoacetamide. To identify the cysteine residue involved in the thioester linkage, [14C]carboxyamidomethylated P0was digested with trypsin and the resulting peptides analyzed by reversed-phase HPLC. Identification of the radioactive protein fragments by amino acid analysis and amino-terminal peptide sequencing revealed that Cys153 in rat P0 glycoprotein is the acylation site. The acylated cysteine is located at the junction of the putative transmem-brane and cytoplasmic domains. This residue is also present in the P0 glycoprotein of other species, including human, bovine, mice, and chicken.  相似文献   

2.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

3.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is the only member of the lipocalin superfamily that displays enzymatic activity. It binds lipophilic ligands with high affinity and also can catalyze PGH2 to produce PGD2. Three cysteine residues, Cys65, Cys89, and Cys186 in L-PGDS, are conserved among all species, of which Cys89 and Cys186 residues form a disulfide bridge. In this study, we clarified the effects of thiol groups on the structure of the protein and investigated the structural significance of Cys residues of rat L-PGDS by site-directed mutagenesis. Four mutants were constructed by substituting Cys residues with alanine to identify the correct formation of disulfide bonds among these three residues. The effects of thiol groups on the structure of rat L-PGDS were also identified by these mutants. Analysis of HSQC experiments indicated that these enzymes were all properly folded with well defined tertiary structures. As the first step towards the 3-D nuclear magnetic resonance solution structure, we optimized expression of recombinant rat L-PGDS in Escherichia coli and established an efficient and economic purification protocol yielding large amounts of pure isotopically labeled rat L-PGDS. The results of assignments indicated that the wild-type rat L-PGDS obtained using this expression system was suitable for determination of 3-D nuclear magnetic resonance solution structure.  相似文献   

4.
Abstract: The cell adhesion molecule L1 plays an important role in neural development, and mutations in human L1 have been implicated in X-linked hydrocephalus and related neurological diseases. We have previously demonstrated that recombinant proteins containing the second immunoglobulin-like domain (Ig2) of L1 contain both homophilic binding and neuritogenic activities. In this report, the involvement of L1 Ig2 in cell-cell adhesion and neuritogenesis was further evaluated in cell transfection studies. Transfectants expressing intact L1 were capable of undergoing L1-dependent self-aggregation and promoting neurite outgrowth from neural retinal cells. However, both activities were abolished in transfectants expressing L1Δ2, a mutant L1 with Ig2 deleted. In competition experiments, the wild-type Ig2 fusion protein inhibited L1-dependent cell aggregation, whereas an Ig2 fusion protein containing the hydrocephalus mutation R184Q did not. Oligopeptides flanking Arg184 were therefore synthesized and assayed for their effects on L1-mediated cell-cell binding and neuritogenesis. The peptide L1-A, spanning the residues His178 and Gly191, inhibited both L1- and Ig2 fusion protein-mediated homophilic binding. When neural retinal cells were cultured on substrate-coated Ig2 fusion protein, peptide L1-A also abolished L1-dependent neurite outgrowth. Substitutions of several charged residues and hydrophobic residues with alanine in peptide analogues led to the loss of inhibitory effects, suggesting that multiple amino acids might be involved in L1-L1 binding. Taken together, these results identify an L1 homophilic binding site within the sequence HIKQDERVTMGQNG of Ig2 and demonstrate the requirement of L1 homophilic binding in the promotion of neurite outgrowth.  相似文献   

5.
Kinetics of Entry of P0 Protein into Peripheral Nerve Myelin   总被引:5,自引:5,他引:0  
Abstract: Sciatic nerves from 9-day-old rat pups were removed, sliced into 0.4-mm sections, and incubated with [3H]fucose or [14C]glycine precursors. The nerve slice system gave nearly linear incorporation of [3H]fucose as a function of time for 3 h, after an initial lag of ˜30 min for homogenate and ˜60 min for myelin. Incorporation of [3H]fucose at constant specific radioactivity was directly proportional to exogenous fucose levels over the range 3.0 × 10−8 m to 1.5 × 10−6 m . Analysis of labeled proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that greater than 50% of labeled glycoprotein was P0, with no other major constituents. This system was used in fucose-chase experiments to determine that a period of ˜20 min elapses between fucosylation and assembly of P0 into myelin. Cycloheximide inhibition of protein synthesis was used to determine that a period of ˜33 min elapses between protein synthesis and appearance of P0 myelin.  相似文献   

6.
Abstract: It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2×2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2×2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2×2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2×2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2×2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2×2 receptor and ATP-mediated physiological effects in the nervous system.  相似文献   

7.
Abstract: The myelin specific protein, P2, was localized immunocytochemically in electron micrographs of 4-day-old rat peripheral nerve by a preembedding technique. P2 staining was restricted to Schwann cells that had established a one-to-one relationship with an axon. P2 antiserum produced a diffuse staining throughout the entire cytosol of myelinating Schwann cells. In addition, the cytoplasmic side of Schwann cell plasma membranes and the membranes of cytoplasmic organelles that were exposed to cytosol were stained by P2 antiserum. This cytoplasmic localization of P2 protein is similar to that described for soluble or peripheral membrane proteins that are synthesized on free ribosomes. P2 antiserum stained the cytoplasmic side of Schwann cell membranes that formed single or multiple loose myelin spirals around an axon. In the region of the outer mesaxon, P2 antiserum stained the major dense line of compact myelin. These results demonstrate that P2 protein is located on the cytoplasmic side of compact myelin membranes and are consistent with biochemical studies demonstrating P2 to be a peripheral membrane protein.  相似文献   

8.
Sorting of yeast Ist2 to the plasma membrane (PM) or the cortical endoplasmic reticulum (ER) requires a cortical sorting signal (CSSIst2) that interacts with lipids including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) at the PM. Here, we show that the expression of Ist2 in mammalian cells resulted in a peripheral patch-like localization without any detection of Ist2 at the cell surface. Attached to C-termini of mammalian integral membrane proteins, the CSSIst2 targeted these proteins to PM-associated domains of the ER and abolished trafficking via the classical secretory pathway. The interaction of integral membrane proteins with PI(4,5)P2 at the PM created ER–PM contacts. This process is similar to the regulated coupling of ER domains to the PM via stromal interaction molecule (STIM) proteins during store-operated Ca2+ entry (SOCE). The CSSIst2 and the C-terminus of the ER-located Ca2+ sensor STIM2 were sufficient to bind PI(4,5)P2 and PI(3,4,5)P3 at the PM, showing that an evolutionarily conserved mechanism is involved in the sorting of integral membrane proteins to PM-associated domains of the ER. Yeast Ist2 and STIM2 share a common basic and amphipathic signal at their extreme C-termini. STIM1 showed binding preference for liposomes containing PI(4,5)P2, suggesting a specific contribution of lipids to the recruitment of ER domains to the PM during SOCE.  相似文献   

9.
Abstract: The effect of an inhibitor of N -glycosylation of glycoproteins, tunicamycin, on synthesis of PNS myelin proteins was investigated in vitro by using chopped sciatic nerves or spinal roots of 21-day-old Wistar rats. Tunicamycin when incubated with these nerves in the presence of 3H-labeled fucose, mannose, or glucosamine inhibited the uptake of radioactivity into myelin proteins including some high-molecular-weight proteins, P0, 23K protein, and 19K protein by amounts ranging from 42 to 79%. Uptake of 14Camino acid mixture was inhibited much less by tunicamycin, but a new radioactive protein peak appeared when the protein mixtures had been separated by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. This protein ran directly in front of the P0 peak, did not correspond to any bands stained by Fast green, and was not labeled by fucose. This peak appeared in increasing larger proportions with progressive time of incubation of nerves with 3H amino acids in the presence of tunicamycin. The new protein, which cross-reacts with P0 antiserum, was tentatively identified as a nonglycosylated P0 protein that appears to be almost as well incorporated as P0 into the subcellular fraction containing myelin. At this time it is not possible to determine whether the unglycosylated P0 is actually assembled into a site and configuration like that of P0.  相似文献   

10.
Abstract: The regulatory role of A2A adenosine receptors in P2 purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with 2- p -(2-carboxyethyl)-phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680), a specific agonist of the A2A adenosine receptor, the extracellular ATP-evoked rise in cytosolic free Ca2+ concentration ([Ca2+]i) was inhibited by 20%. Both intracellular calcium release and inositol 1,4,5-trisphosphate production evoked by ATP were not affected by CGS-21680 treatment. However, ATP-evoked Ca2+ influx was inhibited following CGS-21680 stimulation. The CGS-21680-mediated inhibition occurred independently of nifedipine-induced inhibition of the [Ca2+]i rise. The CGS-21680-induced inhibition was completely blocked by reactive blue 2. The CGS-21680 effect was mimicked by forskolin and dibutyryl-cyclic AMP and blocked by Rp -adenosine 3',5'-cyclic monophosphothioate, a protein kinase A inhibitor, or by staurosporine, a general kinase inhibitor. The data suggest that in PC12 cells activation of A2A adenosine receptors leads to inhibition of P2 purinoceptor-mediated Ca2+ influx through ATP-gated cation channels and involves protein kinase A.  相似文献   

11.
The myelin P0 protein is glycosylated at a single site, asparagine 93, within its only immunoglobulin (Ig)-like domain. We have previously shown that P0 behaves like a homophilic adhesion molecule (Filbin, M. T., F. S. Walsh, B. D. Trapp, J. A. Pizzey, and G. I. Tennekoon. 1990. Nature (Lond.). 344:871-872). To determine if the sugar residues of this molecule contribute to its adhesiveness, the glycosylation site was eliminated by replacing asparagine 93 with an alanine, through site- directed mutagenesis of the P0 cDNA. The mutated P0 cDNA was transfected into CHO cells and surface expression of the mutated P0 was assessed by immunofluorescence, limited trypsinization and an ELISA. A cell line was chosen which expressed approximately equivalent amounts of the unglcosylated P0 (UNGP0) at the cell surface as did a cell line expressing the fully glycosylated P0 (GPo); the adhesive properties of these two cell lines were compared. It was found that when a single cell suspension of the UNGPo cells were incubated, by 60 min, unlike the GP0 cells, they had not formed large aggregates; they were indistinguishable from the control transfected cells. This suggests that the UNGP0 protein does not behave like an adhesion molecule. To establish if only one molecule in the P0:P0 homophilic pair must be glycosylated for adhesion to occur, the ability of UNGP0 cells to adhere to GP0 cells was assessed both qualitatively and quantitatively. The results of both types of assay imply that, indeed, both P0 molecules in the homophilic pair must be glycosylated for adhesion to take place.  相似文献   

12.
PROTEIN COMPOSITION OF MYELIN OF THE PERIPHERAL NERVOUS SYSTEM   总被引:33,自引:15,他引:18  
Abstract— Myelin was purified from the peripheral nervous system (PNS) of several species. The protein composition of these preparations was examined by discontinuous polyacrylamide gel electrophoresis in buffers containing sodium lauryl sulphate. Proteins characteristic of all samples include, in order of increasing mobility: a series of high molecular weight proteins, the major peripheral nerve protein (P0), two uncharacterized proteins, and two basic proteins (P1 and P2). Quantitative results, obtained by densitometry of gels stained with Fast Green showed differences in protein distribution, both between species, and from different types of nerves obtained from the same animal. The relative amounts of P1 and P2 proteins were the most variable; e.g. myelin from guinea-pig sciatic nerve had little or no P2 protein, whereas 15 per cent of the myelin protein of beef posterior intradural root was Pz protein. P0, P1 and P2 proteins from rabbit sciatic nerve and P0 and P2 proteins from beef dorsal and ventral intradural roots were purified and their amino acid compositions were determined. Our results indicated that the P1 protein is very similar in size and amino acid composition to the basic protein of central nervous system myelin, whereas the P0 and P2 proteins are unique to the PNS.  相似文献   

13.
Abstract: The myelin P2 protein, a 14,800-Da cytosolic protein found primarily in peripheral nerves, belongs to a family of fatty acid binding proteins. Although it is similar in amino acid sequence and tertiary structure to fatty acid binding proteins found in the liver, adipocytes, and intestine, its expression is limited to the nervous system. It is detected only in myelin-producing cells of the central and peripheral nervous systems, i.e., the oligodendrocytes and Schwann cells, respectively. As part of a program to understand the regulation of expression of this gene, to determine its function in myelin-producing cells, and to study its role in peripheral nerve disease, we have isolated and characterized overlapping human genomic clones encoding the P2 protein. We report here on the partial structure of this gene, and on its localization within the genome. By using a panel of human-hamster somatic cell hybrids and by in situ hybridization, we have mapped the human P2 gene to segment q21 on the long arm of chromosome 8. This result identifies the myelin P2 gene as a candidate gene for autosomal recessive Charcot-Marie-Tooth disease type 4A.  相似文献   

14.
Abstract: The cellular localization of two Ca2+-dependent protein phosphorylation systems was investigated using the kainic acid lesioning technique for the selective destruction of neurons. In one of these systems, a crude synaptosomal (P2) fraction was preincubated with 32Pj for 30 min; the phosphorylation of several proteins was increased during a short subsequent incubation with veratridine plus Ca2+. In the second system, crude synaptosomal membranes isolated from the P2 fraction were incubated with [γ-32P]ATP; in this system, the phosphorylation of several proteins was increased in the presence of a "calcium-dependent regulator" plus Ca2+. Kainic acid lesioning greatly reduced the amount of Ca-+-dependent protein phosphorylation in both systems. The results indicate a predominantly neuronal localization for both Ca2+-dependent protein phosphorylation systems.  相似文献   

15.
Abstract: To understand better the mechanisms by which progesterone (PROG) promotes myelination in the PNS, cultured rat Schwann cells were transiently transfected with reporter constructs in which luciferase expression was controlled by the promoter region of either the peripheral myelin protein-22 (PMP22) or the protein zero (P0) genes. PROG stimulated the P0 promoter and promoter 1, but not promoter 2, of PMP22. The effect of PROG was specific, as estradiol and testosterone only weakly activated promoters. Dose-response curves for stimulation of both promoter constructs by PROG were biphasic. RU486, a PROG antagonist, did not abolish the effect of PROG, but stimulated promoter activities by itself. In the human carcinoma cell line T47D expressing high levels of PROG receptor, PROG did not stimulate the P0 and PMP22 promoters, whereas the promoter region of the mouse mammary tumor virus was fully activated. Thus, the activation by PROG of promoter activity of two peripheral myelin protein genes is Schwann-cell specific.  相似文献   

16.
Abstract: Circular dichroism (CD) was used to study the conformations of bovine nerve root P2 basic protein, its reduced and carboxymethylated derivative (RCM-P2), and its large cyanogen bromide fragment (CN1). Data in the far UV show that both the parent protein and RCM-P2 have conformations dominated by a large amount of β structure. However, the CN1 peptide appears to exist in a largely unordered conformation. Since CN1 lacks short (20 residue) amino- and carboxy-terminal segments of the P2 protein, the spectral data suggest that these regions are important for determining and/or maintaining folding of the P2 protein in aqueous solutions. The P2 protein was found to have a distinctive CD spectrum in the near UV. The characteristics of molar ellipticities indicate that the spectrum contains significant contributions from tyrosine residues, and that these contributions suggest different environments for the two tyrosines in P2 protein. Both environments depend on protein conformation, since CD side chain absorptions are lost when P2 protein is denatured with 5 M urea.  相似文献   

17.
Abstract: Extracellular ATP is known to cause a variety of changes, including the alteration of ion fluxes, cell growth, and other physiological activities. Recently, it has been suggested that ATP acts as an excitatory synaptic transmitter, which may produce a Ca2+ influx via the activation of a P2y purinoceptor. Rat pheochromocytoma (PC-12) cells are known to resemble rat sensory neurons and to possess a P2y purinoceptor. In this study, we demonstrated that extracellular ATP dose-dependently increased PC-12 cell death in the presence of ferrous ions. Voltage-sensitive calcium channel blockers and calpain and xanthine oxidase inhibitors were found to be effective at protecting PC-12 cells from Fe2+/ATP-induced lipid peroxidation and cell death. These results suggest that xanthine oxidase activation induced by calpains and subsequent free radical formation may be responsible for Fe2+/ATP-induced neuronal cell death.  相似文献   

18.
Process pasteurization values for reference temperature 70°C (P70) were calculated from the temperature profiles of 250 g luncheon meat chubs cooked under experimental conditions. A simple equation relating Process P70-value and the time and temperature of cooking was derived. With minimal cooking (P70= 40) the surviving microflora (103/g) was dominated by species of Lactobacillus, Brochothrix and Micrococcus. These organisms were destroyed by more intensive cooking (P70= 105), leaving a flora (102/g) composed of Bacillus and Micrococcus species. The spoilage that developed after 14 d storage at 25°C reflected the severity of the heat treatment received by each chub: with P70 between 40 and 90, a Streptococcus spoilage sequence occurred; with P70 between 105 and 120, a Bacillus/Streptococcus spoilage sequence occurred; with P70 of 135 and above, a Bacillus spoilage sequence occurred. Cooking to a P70= 75 was adequate to reduce the surviving microflora to the 102/g level associated with current good manufacturing practice.  相似文献   

19.
The protein p42IP4 (aka Centaurin α-1) is highly enriched in the brain and has specific binding sites for the membrane lipid phosphatidylinositol 3,4,5-trisphosphate and the soluble messenger inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4; IP4). p42IP4 shuttles between plasma membrane, cytosol and cell nucleus. However, the molecular function of p42IP4 is still largely unclear. Here, we report a novel interaction partner for p42IP4, Ran binding protein in microtubule-organizing center (RanBPM). RanBPM is ubiquitously expressed and seems to act as scaffolding and modulator protein. In our studies, we established this interaction in vitro and in vivo . The in vivo interaction was demonstrated with endogenous RanBPM from rat brain. Both proteins co-localize in transfected HEK 293 cells. We could show that the interaction does not require additional proteins. D-Ins(1,3,4,5)P4, a specific ligand for p42IP4, is a concentration-dependent and stereoselective inhibitor of this interaction; the l -isoform is much less effective. We found that mainly the SPRY domain of RanBPM mediates the p42IP4-RanBPM association. The ARFGAP domain of p42IP4 is important for the interaction, without being the only interaction site. Recently, p42IP4 and RanBPM were shown to be involved in dendritic differentiation. Thus, we hypothesize that RanBPM could act as a modulator together with p42IP4 in synaptic plasticity.  相似文献   

20.
Abstract: Cultured astroglia express both adenosine and ATP purinergic receptors that are coupled to increases in intracellular calcium concentration ([Ca2+]i). Currently, there is little evidence that such purinergic receptors exist on astrocytes in vivo. To address this issue, calcium-sensitive fluorescent dyes were used in conjunction with confocal microscopy and immunocytochemistry to examine the responsiveness of astrocytes in acutely isolated hippocampal slices to purinergic neuroligands. Both ATP and adenosine induced dynamic increases in astrocytic [Ca2+]i that were blocked by the adenosine receptor antagonist 8-( p -sulfophenyl)theophylline. The responses to adenosine were not blocked by tetrodotoxin, 8-cyclopentyltheophylline, 8-(3-chlorostyryl)caffeine, dipyridamole, or removal of extracellular calcium. The P2Y-selective agonist 2-methylthioadenosine triphosphate was unable to induce increases in astrocytic [Ca2+]i, whereas the P2 agonist adenosine 5'- O -(2-thiodiphosphate) induced astrocytic responses in a low percentage of astrocytes. These results indicate that the majority of hippocampal astrocytes in situ contain P1 purinergic receptors coupled to increases in [Ca2+]i, whereas a small minority appear to contain P2 purinergic receptors. Furthermore, individual hippocampal astrocytes responded to adenosine, glutamate, and depolarization with increases in [Ca2+]i. The existence of both purinergic and glutamatergic receptors on individual astrocytes in situ suggests that astrocytes in vivo are able to integrate information derived from glutamate and adenosine receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号