首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow‐down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell‐size and fermentation versatility). We found that speciation rates are constant during the time‐range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell‐size), suggesting that lineages resemble each other in trait‐values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell‐size. We also found a significant phylogenetic regression between cell‐size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common‐garden conditions combined with comparative analyses are warranted.  相似文献   

2.
Early burst patterns of diversification have become closely linked with concepts of adaptive radiation, reflecting interest in the role of ecological opportunity in modulating diversification. But, this model has not been widely explored on coral reefs, where biodiversity is exceptional, but many lineages have high dispersal capabilities and a pan‐tropical distribution. We analyze adaptive radiation in labrid fishes, arguably the most ecologically dominant and diverse radiation of fishes on coral reefs. We test for time‐dependent speciation, trophic diversification, and origination of 15 functional innovations, and early bursts in a series of functional morphological traits associated with feeding and locomotion. We find no evidence of time‐dependent or early burst evolution. Instead, the pace of speciation, ecological diversification, and trait evolution has been relatively constant. The origination of functional innovations has slowed over time, although few arose early. The labrid radiation seems to have occurred in response to extensive and still increasing ecological opportunity, but within a rich community of antagonists that may have prevented abrupt diversification. Labrid diversification is closely tied to a series of substantial functional innovations that individually broadened ecological diversity, ultimately allowing them to invade virtually every trophic niche held by fishes on coral reefs.  相似文献   

3.
Biological diversification often includes burst of lineage splitting. Such “radiation” has been known to act as evolutionary arenas with the potential to generate unique phylogenetic clusters and further novel groups. Although these radiations when accompanied by ecological diversification, so-called “adaptive radiation” have persisted as a central premise in evolutionary biology, the ecological and genetic mechanism of such rapid diversification has remained unclear. There are several critical definitions for the pattern of adaptive radiation, and those provide delimitation of adaptive and non-adaptive radiation. That being said, only a few studies have provided any clear demarcations in our understanding of the adaptive and non-adaptive causes of radiation from the mechanism of speciation. Here, we review the current consensus for the causes of adaptive radiation, especially along with the recent theoretical synthesis of “ecological speciation.” Further, we suggest the signature of adaptive and non-adaptive radiation in the earliest stages of diversification from the viewpoint of speciation. These criteria from the speciation view are useful to find the cases with the signatures of adaptive/non-adaptive radiation.  相似文献   

4.
The “early‐burst” model of adaptive radiation predicts an early increase in phenotypic disparity concurrent with lineage diversification. Although most studies report a lack of this coupled pattern, the underlying processes are not identified. The continental radiation of Hemidactylus geckos from Peninsular India includes morphologically diverse species that occupy various microhabitats. This radiation began diversifying ~36 Mya with an early increase in lineage diversification. Here, we test the “early‐burst” hypothesis by investigating the presence of ecomorphs and examining the pattern of morphological diversification in a phylogenetic framework. Two ecomorphs—terrestrial and scansorial species—that vary significantly in body size and toepad size were identified. Unlike the prediction of the “early‐burst” model, we find that disparity in toepad morphology accumulated more recently ~14 Mya and fit the Ornstein‐Ulhenbeck model. Ancestral state reconstruction of the two ecomorphs demonstrates that terrestrial lineages evolved independently at least five times from scansorial ancestors, with the earliest diversification in terrestrial lineages 19–12 Mya. Our study demonstrates a delayed increase in morphological disparity as a result of the evolution of terrestrial ecomorphs. The diversification of terrestrial lineages is concurrent with the establishment of open habitat and grasslands in Peninsular India, suggesting that the appearance of this novel resource led to the adaptive diversification.  相似文献   

5.
The study of male genital diversity has long overshadowed evolutionary inquiry of female genitalia, despite its nontrivial diversity. Here, we identify four nonmutually exclusive mechanisms that could lead to genital divergence in females, and potentially generate patterns of correlated male–female genital evolution: (1) ecological variation alters the context of sexual selection (“ecology hypothesis”), (2) sexually antagonistic selection (“sexual‐conflict hypothesis”), (3) female preferences for male genitalia mediated by female genital traits (“female‐choice hypothesis”), and (4) selection against inter‐population mating (“lock‐and‐key hypothesis”). We performed an empirical investigation of all four hypotheses using the model system of Bahamas mosquitofish inhabiting blue holes that vary in predation risk. We found unequivocal support for the ecology hypothesis, with females exhibiting a smaller genital opening in blue holes containing piscivorous fish. This is consistent with stronger postmating female choice/conflict when predators are present, but greater premating female choice in their absence. Our results additionally supported the lock‐and‐key hypothesis, uncovering a pattern of reproductive character displacement for genital shape. We found no support for the sexual conflict or female choice hypotheses. Our results demonstrate a strong role for ecology in generating female genital diversity, and suggest that lock‐and‐key may provide a viable cause of female genital diversification.  相似文献   

6.
Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time‐calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per‐lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity.  相似文献   

7.
According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such ‘early bursts’ of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time‐calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation.  相似文献   

8.
Aim We examine diversification in Caribbean alsophiine snakes and hypothesize that, given the ecological opportunity presented by colonization of the West Indies, alsophiines should show the signature of an early burst of diversification and associated low within‐clade ecological and morphological disparification. We also test whether changes in morphology and ecology are associated with changes in diversification rate, as trait‐dependent diversification is hypothesized to affect historical inferences of diversification and disparification. Finally, as replicated radiations are found across the West Indies in the anoles, we test for significant differences in ecological and morphological assemblages and rates among the major island groups. Location The West Indies. Methods A time‐calibrated phylogeny produced from six genes using relaxed clock methods in beast was constructed to estimate ancestral areas using Lagrange . Maximum body size and ecological niche were scored for all species in the phylogeny, and comparative phylogenetic methods in R using geiger , laser , ape and our own code were used to examine diversification through time, disparification and trait‐dependent diversification from this dated phylogeny. Results The pattern of species diversification did not differ significantly from the Yule model of diversification. Morphology and ecology fitted a Brownian and white noise model of diversification, respectively. Although not significantly different, morphological disparification was lower than the Brownian null model, whereas ecological disparification was significantly greater than the null. Trait‐dependent diversification analyses suggested that the constant null models provided the best fit to these data. There was no significant signal of rate variation among the major island groups for size, but moderate evidence for niche. Main conclusions Although ecological opportunity was similarly present for alsophiines as it was for anoles, the snakes fail to show an early burst of speciation. Potential reasons for this include the young age of the group, and staggered diversification due to waiting times between island colonization. In turn, ecological and morphological disparities do not necessarily follow predictable patterns related to species diversification. Thus, the presence of ecological opportunity alone is not necessarily sufficient to trigger replicated adaptive radiations in areas.  相似文献   

9.
Ecological opportunity, defined as access to new resources free from competitors, is thought to be a catalyst for the process of adaptive radiation. Much of what we know about ecological opportunity, and the larger process of adaptive radiation, is derived from vertebrate diversification on islands. Here, we examine lineage diversification in the turtle ants (Cephalotes), a species‐rich group of ants that has diversified throughout the Neotropics. We show that crown group turtle ants originated during the Eocene (around 46 mya), coincident with global warming and the origin of many other clades. We also show a marked lineage‐wide slowdown in diversification rates in the Miocene. Contrasting this overall pattern, a species group associated with the young and seasonally harsh Chacoan biogeographic region underwent a recent burst of diversification. Subsequent analyses also indicated that there is significant phylogenetic clustering within the Chacoan region and that speciation rates are highest there. Together, these findings suggest that recent ecological opportunity, from successful colonization of novel habitat, may have facilitated renewed turtle ant diversification. Our findings highlight a central role of ecological opportunity within a successful continental radiation.  相似文献   

10.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

11.
Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.  相似文献   

12.
Mediterranean‐type ecosystems (MTEs) contain exceptional plant diversity. Explanations for this diversity are usually classed as either “equilibrium,” with elevated MTE diversity resulting from greater ecological carrying capacities, or “non‐equilibrium,” with MTEs having a greater accumulation of diversity over time than other types of ecosystems. These models have typically been considered as mutually exclusive. Here, we present a trait‐based explanatory framework that incorporates both equilibrium and non‐equilibrium dynamics. Using a large continental Australian plant radiation (Hakea) as a case study, we identify traits associated with niche partitioning in coexisting species (α‐traits) and with environmental filtering (β‐traits), and reconstruct the mode and relative timing of diversification of these traits. Our results point to a radiation with an early non‐equilibrium phase marked by divergence of β‐traits as Hakea diversified exponentially and expanded from the southwest Australian MTE into biomes across the Australian continent. This was followed from seven million years ago by an equilibrium phase, marked by diversification of α‐traits and a slowdown in lineage diversification as MTE‐niches became saturated. These results suggest that processes consistent with both equilibrium and non‐equilibrium models have been important during different stages of the radiation of Hakea, and together they provide a richer explanation of present‐day diversity patterns.  相似文献   

13.
Evidence from both molecular phylogenies and the fossil record suggests that rates of species diversification often decline through time during evolutionary radiations. One proposed explanation for this pattern is ecological opportunity, whereby an initial abundance of resources and lack of potential competitors facilitate rapid diversification. This model predicts density-dependent declines in diversification rates, but has not been formally tested in any species-level radiation. Here we develop a new conceptual framework that distinguishes density dependence from alternative processes that also produce temporally declining diversification, and we demonstrate this approach using a new phylogeny of North American Dendroica wood warblers. We show that explosive lineage accumulation early in the history of this avian radiation is best explained by a density-dependent diversification process. Our results suggest that the tempo of wood warbler diversification was mediated by ecological interactions among species and that lineage and ecological diversification in this group are coupled, as predicted under the ecological opportunity model.  相似文献   

14.
The uneven distribution of diversity is a conspicuous phenomenon across the tree of life. Ecological opportunity is a prominent catalyst of adaptive radiation and therefore may alter patterns of diversification. We evaluated the distribution of shifts in diversification rates across the cichlid phylogeny and the distribution of major clades across phylogenetic space. We also tested if ecological opportunity influenced these patterns. Colonization‐associated ecological opportunity altered the tempo and mode of diversification during the adaptive radiation of cichlid fishes. Clades that arose following colonization events diversified faster than other clades. Speciation rate shifts were nonrandomly distributed across the phylogeny such that they were disproportionally concentrated around nodes that corresponded with colonization events (i.e., of continents, river basins, or lakes). Young clades tend to expand faster than older clades; however, colonization‐associated ecological opportunity accentuated this pattern. There was an interaction between clade age and ecological opportunity that explained the trajectory of clades through phylogenetic space over time. Our results indicate that ecological opportunities afforded by continental and ecosystem‐scale colonization events explain the dramatic speciation rate heterogeneity and phylogenetic imbalance that arose during the evolutionary history of cichlid fishes.  相似文献   

15.
The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche‐related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species‐rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity – but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying the four major components of the concept of ecological opportunity.  相似文献   

16.
Simpson's “early burst” model of adaptive radiation was intended to explain the early proliferation of morphological and functional variation in diversifying clades. Yet, despite much empirical testing, questions remain regarding its frequency across the tree of life. Here, we evaluate the support for an early burst model of adaptive radiation in 14 ecomorphological traits plus body mass for the extant mammalian order Carnivora and its constituent families. We find strong support for early bursts of dental evolution, suggesting a classic Simpsonian adaptive radiation along dietary resource axes. However, the signal of this early burst is not consistently recovered in analyses at the family level, where support for a variety of different models emerges. Furthermore, we find no evidence for early burst–like dynamics in size–related traits, and Bayesian analyses of evolutionary correlations corroborate a decoupling of size and dental evolution, driven in part by dietary specialization. Our results are consistent with the perspective that trait diversification unfolds hierarchically, with early bursts restricted to traits associated with higher level niches, such as macrohabitat use or dietary strategy, and thus with the origins of higher taxa. The lack of support for early burst adaptive radiation in previous phylogenetic studies may be a consequence of focusing on low‐level niche traits (i.e., those associated with microhabitat use) in clades at shallow phylogenetic levels. A richer understanding of early burst adaptive radiation will require a renewed focus on functional traits and their evolution over higher level clades.  相似文献   

17.
The emergence of exceptionally diverse clades is often attributed to ecological opportunity. For example, the exceptional diversity in the most diverse superfamily of mammals, muroid rodents, has been explained in terms of multiple independent adaptive radiations. If multiple ecological opportunity events are responsible for generating muroid diversity, we expect to find evidence of these lineages ecologically diversifying following dispersal into new biogeographical areas. In the present study, we tested the trait‐based predictions of ecological opportunity using data on body size, appendages, and elevation in combination with previously published data on biogeographical transitions and a time‐calibrated molecular phylogeny. We identified weak to no support of early ecological diversification following the initial colonizations of all continental regions, based on multiple tests, including node height tests, disparity through time plots, evolutionary model comparison, and Bayesian analysis of macroevolutionary mixtures. Clades identified with increased diversification rates, not associated with geographical transitions, also did not show patterns of phenotypic divergence predicted by ecological opportunity, which suggests that phylogenetic diversity and phenotypic disparity may be decoupled in muroids. These results indicate that shifts in diversification rates and biogeographically‐mediated ecological opportunity are poor predictors of phenotypic diversity patterns in muroids.  相似文献   

18.
Abstract The ecology and evolutionary biology of insect–plant associations has realized extensive attention, especially during the past 60 years. The classifications (categorical designations) of continuous variation in biodiversity, ranging from global patterns (e.g., latitudinal gradients in species richness/diversity and degree of herbivore feeding specialization) to localized insect–plant associations that span the biospectrum from polyphenisms, polymorphisms, biotypes, demes, host races, to cryptic species, remain academically contentious. Semantic and biosystematic (taxonomical) disagreements sometimes detract from more important ecological and evolutionary processes that drive diversification, the dynamics of gene flow and local extinctions. This review addresses several aspects of insect specialization, host‐associated divergence and ecological (including “hybrid”) speciation, with special reference to the climate warming impacts on species borders of hybridizing swallowtail butterflies (Papilionidae). Interspecific hybrid introgression may result in collapse of multi‐species communities or increase species numbers via homoploid hybrid speciation. We may see diverging, merging, or emerging genotypes across hybrid zones, all part of the ongoing processes of evolution. Molecular analyses of genetic mosaics and genomic dynamics with “divergence hitchhiking”, combined with ecological, ethological and physiological studies of “species porosity”, have already begun to unveil some answers for some important ecological/evolutionary questions. (i) How rapidly can host‐associated divergence lead to new species (and why doesn't it always do so, e.g., resulting in “incomplete” speciation)? (ii) How might “speciation genes” function, and how/where would we find them? (iii) Can oscillations from specialists to generalists and back to specialists help explain global diversity in herbivorous insects? (iv) How could recombinant interspecific hybridization lead to divergence and speciation? From ancient phytochemically defined angiosperm affiliations to recent and very local geographical mosaics, the Papilionidae (swallowtail butterflies) have provided a model for enhanced understanding of ecological patterns and evolutionary processes, including host‐associated genetic divergence, genomic mosaics, genetic hitchhiking and sex‐linked speciation genes. Apparent homoploid hybrid speciation in Papilio appears to have been catalyzed by climate warming‐induced interspecific introgression of some, but not all, species diagnostic traits, reflecting strong divergent selection (discordant), especially on the Z (= X) chromosome. Reproductive isolation of these novel recombinant hybrid genotypes appears to be accomplished via a delayed post‐diapause emergence or temporal isolation, and is perhaps aided by the thermal landscape. Changing thermal landscapes appear to have created (and may destroy) novel recombinant hybrid genotypes and hybrid species.  相似文献   

19.
Ecological opportunity is frequently proposed as the sole ingredient for adaptive radiation into novel niches. An additional trigger may be genome‐wide hybridization resulting from “hybrid swarm.” However, these hypotheses have been difficult to test due to the rarity of comparable control environments lacking adaptive radiations. Here I exploit such a pattern in microendemic radiations of Caribbean pupfishes. I show that a sympatric three species radiation on San Salvador Island, Bahamas diversified 1445 times faster than neighboring islands in jaw length due to the evolution of a novel scale‐eating adaptive zone from a generalist ancestral niche. I then sampled 22 generalist populations on seven neighboring islands and measured morphological diversity, stomach content diversity, dietary isotopic diversity, genetic diversity, lake/island areas, macroalgae richness, and Caribbean‐wide patterns of gene flow. None of these standard metrics of ecological opportunity or gene flow were associated with adaptive radiation, except for slight increases in macroalgae richness. Thus, exceptional trophic diversification is highly localized despite myriad generalist populations in comparable environmental and genetic backgrounds. This study provides a strong counterexample to the ecological and hybrid swarm theories of adaptive radiation and suggests that diversification of novel specialists on a sparse fitness landscape is constrained by more than ecological opportunity and gene flow.  相似文献   

20.
Ants are one of the most ecologically and numerically dominant group of terrestrial organisms with most species diversity currently found in tropical climates. Several explanations for the disparity of biological diversity in the tropics compared to temperate regions have been proposed including that the tropics may act as a “museum” where older lineages persist through evolutionary time or as a “cradle” where new species continue to be generated. We infer the molecular phylogenetic relationships of 295 ant specimens including members of all 21 extant subfamilies to explore the evolutionary diversification and biogeography of the ants. By constraining the topology and age of the root node while using 45 fossils as minimum constraints, we converge on an age of 139–158 Mya for the modern ants. Further diversification analyses identified 10 periods with a significant change in the tempo of diversification of the ants, although these shifts did not appear to correspond to ancestral biogeographic range shifts. Likelihood‐based historical biogeographic reconstructions suggest that the Neotropics were important in early ant diversification (e.g., Cretaceous). This finding coupled with the extremely high‐current species diversity suggests that the Neotropics have acted as both a museum and cradle for ant diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号