首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishing the sex of individuals in wild systems can be challenging and often requires genetic testing. Genotyping‐by‐sequencing (GBS) and other reduced‐representation DNA sequencing (RRS) protocols (e.g., RADseq, ddRAD) have enabled the analysis of genetic data on an unprecedented scale. Here, we present a novel approach for the discovery and statistical validation of sex‐specific loci in GBS data sets. We used GBS to genotype 166 New Zealand fur seals (NZFS, Arctocephalus forsteri) of known sex. We retained monomorphic loci as potential sex‐specific markers in the locus discovery phase. We then used (i) a sex‐specific locus threshold (SSLT) to identify significantly male‐specific loci within our data set; and (ii) a significant sex‐assignment threshold (SSAT) to confidently assign sex in silico the presence or absence of significantly male‐specific loci to individuals in our data set treated as unknowns (98.9% accuracy for females; 95.8% for males, estimated via cross‐validation). Furthermore, we assigned sex to 86 individuals of true unknown sex using our SSAT and assessed the effect of SSLT adjustments on these assignments. From 90 verified sex‐specific loci, we developed a panel of three sex‐specific PCR primers that we used to ascertain sex independently of our GBS data, which we show amplify reliably in at least two other pinniped species. Using monomorphic loci normally discarded from large SNP data sets is an effective way to identify robust sex‐linked markers for nonmodel species. Our novel pipeline can be used to identify and statistically validate monomorphic and polymorphic sex‐specific markers across a range of species and RRS data sets.  相似文献   

2.
We demonstrate a genotyping‐by‐sequencing approach to identify homomorphic sex chromosomes and their homolog in a distantly related reference genome, based on noninvasive sampling of wild‐caught individuals, in the moor frog Rana arvalis. Double‐digest RADseq libraries were generated using buccal swabs from 30 males and 21 females from the same population. Search for sex‐limited markers from the unfiltered data set (411 446 RAD tags) was more successful than searches from a filtered data set (33 073 RAD tags) for markers showing sex differences in heterozygosity or in allele frequencies. Altogether, we obtained 292 putatively sex‐linked RAD loci, 98% of which point to male heterogamety. We could map 15 of them to the Xenopus tropicalis genome, all but one on chromosome pair 1, which seems regularly co‐opted for sex determination among amphibians. The most efficient mapping strategy was a three‐step hierarchical approach, where R. arvalis reads were first mapped to a low‐coverage genome of Rana temporaria (17 My divergence), then the R. temporaria scaffolds to the Nanorana parkeri genome (90 My divergence), and finally the N. parkeri scaffolds to the X. tropicalis genome (210 My). We validated our conclusions with PCR primers amplifying part of Dmrt1, a candidate sex determination gene mapping to chromosome 1: a sex‐diagnostic allele was present in all 30 males but in none of the 21 females. Our approach is likely to be productive in many situations where biological samples and/or genomic resources are limited.  相似文献   

3.
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex‐determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large‐scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female‐biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex‐determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild‐caught male and female adults, except in one high‐altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex‐chromosome differentiation in amphibians.  相似文献   

4.
Genetic crosses between the dioecious Bryonia dioica (Cucurbitaceae) and the monoecious B. alba in 1903 provided the first clear evidence for Mendelian inheritance of dioecy and made B. dioica the first organism for which XY sex‐determination was experimentally proven. Applying molecular tools to this system, we developed a sex‐linked sequence‐characterized amplified region (SCAR) marker for B. dioica and sequenced it for individuals representing the full geographic range of the species from Scotland to North Africa. For comparison, we also sequenced this marker for representatives of the dioecious B. cretica, B. multiflora and B. syriaca, and monoecious B. alba. In no case did any individual, male or female, yield more than two haplotypes. In northern Europe, we found strong linkage between our marker and sex, with all Y‐sequences being identical to each other. In southern Europe, however, the linkage between our marker and sex was weak, with recombination detected within both the X‐ and the Y‐homologues. Population genetic analyses suggest that the SCAR marker experienced different evolutionary pressures in northern and southern Europe. These findings fit with phylogenetic evidence that the XY system in Bryonia is labile and suggest that the genus may be a good system in which to study the early steps of sex chromosome evolution.  相似文献   

5.
Patterns of sex‐chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern‐boreal population of Ammarnäs displayed well‐differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y‐specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female‐biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co‐option of small genomic regions that harbor key genes from the sex‐determination pathway.  相似文献   

6.
Flexibility and low cost make genotyping‐by‐sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI‐MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference‐free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000–11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking.  相似文献   

7.
High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping‐by‐sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo‐pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the ‘speciation continuum’.  相似文献   

8.
Population genetic studies in nonmodel organisms are often hampered by a lack of reference genomes that are essential for whole‐genome resequencing. In the light of this, genotyping methods have been developed to effectively eliminate the need for a reference genome, such as genotyping by sequencing or restriction site‐associated DNA sequencing (RAD‐seq). However, what remains relatively poorly studied is how accurately these methods capture both average and variation in genetic diversity across an organism's genome. In this issue of Molecular Ecology Resources, Dutoit et al. (2016) use whole‐genome resequencing data from the collard flycatcher to assess what factors drive heterogeneity in nucleotide diversity across the genome. Using these data, they then simulate how well different sequencing designs, including RAD sequencing, could capture most of the variation in genetic diversity. They conclude that for evolutionary and conservation‐related studies focused on the estimating genomic diversity, researchers should emphasize the number of loci analysed over the number of individuals sequenced.  相似文献   

9.
Whole‐genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping‐by‐sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: (i) the expected frequency of heterozygotes exceeds that for singleton loci, and (ii) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci. These deviations are often not apparent within individuals, particularly when sequence coverage is low; but, we postulated that summing allele reads for each locus over all heterozygous individuals in a population would provide sufficient power to detect deviations at those loci. We identified paralogous loci in three species: Chinook salmon (Oncorhynchus tshawytscha) which retains regions with ongoing residual tetrasomy on eight chromosome arms following a recent whole‐genome duplication, mountain barberry (Berberis alpina) which has a large proportion of paralogs that arose through an unknown mechanism, and dusky parrotfish (Scarus niger) which has largely rediploidized following an ancient whole‐genome duplication. Importantly, this approach only requires the genotype and allele‐specific read counts for each individual, information which is readily obtained from most GBS analysis pipelines.  相似文献   

10.
Occasional XY recombination is a proposed explanation for the sex‐chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW‐European Hyla arborea populations identified male‐specific alleles at sex‐linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex‐linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex‐chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY‐recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations).  相似文献   

11.
When long‐lasting, balancing selection can lead to “trans‐species” polymorphisms that are shared by two or more species identical by descent. In such cases, the gene genealogy at the selected site clusters by allele instead of by species, and nearby neutral sites also have unusual genealogies because of linkage. While this scenario is expected to leave discernible footprints in genetic variation data, the specific patterns remain poorly characterized. Motivated by recent findings in primates, we focus on the case of a biallelic polymorphism under ancient balancing selection and derive approximations for summaries of the polymorphism data from two species. Specifically, we characterize the length of the segment that carries most of the footprints, the expected number of shared neutral single nucleotide polymorphisms (SNPs), and the patterns of allelic associations among them. We confirm the accuracy of our approximations by coalescent simulations. We further show that for humans and chimpanzees—more generally, for pairs of species with low genetic diversity levels—these patterns are highly unlikely to be generated by neutral recurrent mutations. We discuss the implications for the design and interpretation of genome scans for ancient balanced polymorphisms in primates and other taxa.  相似文献   

12.
Sex‐biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear‐encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male‐mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude‐associated selection. Our results indicate that in species with sex‐biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments.  相似文献   

13.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

14.
Females are predicted to alter sex allocation when ecological, physiological and behavioural variables have different consequences on the fitness of male and female offspring. Traditionally, tests of sex allocation have examined single causative factors, often ignoring possible interactions between multiple factors. Here, we used a multifactorial approach to examine sex allocation in the viviparous skink, Niveoscincus ocellatus. We integrated a 16‐year observational field study with a manipulative laboratory experiment to explore whether the effects of the maternal thermal environment interact with the resources available to females for reproduction to affect sex allocation decisions. We found strong effects of temperature on sex allocation in the field, with females born in warm conditions and males in cold conditions; however, this was not replicated in the laboratory. In contrast, we found no effect of female resource availability on sex allocation, either independently, or in interaction with temperature. These results corresponded with an overall lack of an effect of resource availability on any of the life history traits that we predicted would mediate the benefits of differential sex allocation in this system, suggesting that selection for sex allocation in response to resource availability may be relatively weak. Combined, these results suggest that temperature may be the predominant factor driving sex allocation in this system.  相似文献   

15.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

16.
Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome‐wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping‐by‐sequencing (GBS) approach was used to provide dense genome‐wide marker coverage (>47 000 SNPs) for a panel of 304 short‐season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean.  相似文献   

17.
Fig‐pollinating wasps (Agaonidae) only reproduce within fig tree inflorescences (figs). Agaonid offspring sex ratios are usually female‐biased and often concur with local mate competition theory (LMC). LMC predicts less female‐bias when several foundresses reproduce in a fig due to reduced relatedness among intra‐sexually competing male offspring. Clutch size, the offspring produced by each foundress, is a strong predictor of agaonid sex ratios and correlates negatively with foundress number. However, clutch size variation can result from several processes including egg load (eggs within a foundress), competition among foundresses and oviposition site limitation, each of which can be used as a sex allocation cue. We introduced into individual Ficus racemosa figs single Ceratosolen fusciceps foundresses and allowed each to oviposit from zero to five hours thus variably reducing their eggs‐loads and then introduced each wasp individually into a second fig. Offspring sex ratio (proportion males) in second figs correlated negatively with clutch size, with males produced even in very small clutches. Ceratosolen fusciceps lay mainly male eggs first and then female eggs. Our results demonstrate that foundresses do not generally lay or attempt to lay a ‘fixed’ number of males, but do ‘reset to zero’ their sex allocation strategy on entering a second fig. With decreasing clutch size, gall failure increased, probably due to reduced pollen. We conclude that C. fusciceps foundresses can use their own egg loads as a cue to facultatively adjust their offspring sex ratios and that foundresses may also produce more ‘insurance’ males when they can predict increasing rates of offspring mortality.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号